Skip to main content
Log in

Modulation of G protein-coupled adenosine receptors by strategically functionalized agonists and antagonists immobilized on gold nanoparticles

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) allow the tuning of pharmacokinetic and pharmacodynamic properties by active or passive targeting of drugs for cancer and other diseases. We have functionalized gold nanoparticles by tethering specific ligands, agonists and antagonists, of adenosine receptors (ARs) to the gold surface as models for cell surface interactions with G protein-coupled receptors (GPCRs). The AuNP conjugates with chain-extended AR ligands alone (PEGylated nucleosides and nonnucleosides, anchored to the Au via thioctic acid) were found to be insoluble in water due to hydrophobic entities in the ligand. Therefore, we added a second, biologically inactive pendant moiety to increase the water solubility, consisting of a PEGylated chain terminating in a carboxylic or phosphate group. The purity and stability of the immobilized biologically active ligand were examined by ultrafiltration and HPLC. Pharmacological receptor binding studies on these GPCR ligand-derivatized AuNPs (2–5 nm in diameter), performed using membranes of mammalian cells stably expressing human A1, A2A, and A3ARs, showed that the desired selectivity was retained with K i values (nanomolar) of A3AR agonist 21b and A2AAR antagonists 24 and 26a of 14 (A3), 34 (A2A), and 69 (A2A), respectively. The corresponding monomers displayed K i values of 37, 61, and 1,420 nM, respectively. In conclusion, we have synthesized stable, water-soluble AuNP derivatives of tethered A3 and A2AAR ligands that retain the biological properties of their monomeric ligands and are intended for therapeutic and imaging applications. This is the first prototypical application to gold carriers of small molecule (nonpeptide) GPCR ligands, which are under investigation for treatment of cancer and inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AR:

Adenosine receptor

DLS:

Dynamic light scattering

DMSO:

Dimethylsulfoxide

EDC:

N-ethyl-N′-dimethylamino-propylcarbodiimide

cAMP:

Adenosine 3′,5′-cyclic phosphate

CHO:

Chinese hamster ovary

Cl-IB-MECA:

2-Chloro-N 6-(3-iodobenzyl)-5′-N-methylcarboxamido-adenosine

DCC:

N,N′-dicyclohexylcarbodiimide

DMAP:

4-Dimethylaminopyridine

DCM:

Dichloromethane

DIEA:

Diisopropylethylamine

DMF:

Dimethylformamide

DMEM:

Dulbecco’s modified Eagle’s medium

AuNP:

Gold nanoparticle

GPCR:

G protein-coupled receptor

HEK:

Human embryonic kidney

CGS21680:

2-[p-(2-carboxyethyl)phenyl-ethylamino]-5′-N-ethylcarboxamido-adenosine

MS:

Mass spectrometry

NECA:

5′-N-ethylcarboxamidoadenosine

PTP:

Pyrazolo[4,3-e][1, 2, 4]triazolo[1,5-c]pyrimidine-5-amine

PyBOP:

Benzotriazol-1-yloxy-tripyrrolidino-phosphonium hexafluorophosphate

SPB:

Surface plasmon absorption band

TEM:

Transmission electron microscopy

THF:

Tetrahydrofuran

I-AB-MECA:

N 6-(4-amino-3-iodobenzyl)-adenosine-5′-N-methyluronamide

PEG:

Polyethylene glycol

PIA:

N 6-(2-phenylisopropyl)adenosine

Tris:

2-amino-2-hydroxymethyl-propane-1,3-diol

References

  1. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities in nanomedicine. Expert Opin Drug Deliv 7:753–763

    Article  PubMed  CAS  Google Scholar 

  2. Chitrani DB (2010) Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol 27:299–311

    Article  Google Scholar 

  3. Huang X, Peng X, Wang Y, Shin DM, El-Sayed MA, Nie S (2010) A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4:5887–5896

    Article  PubMed  CAS  Google Scholar 

  4. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671

    Article  PubMed  CAS  Google Scholar 

  5. Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine (London) 2:113–123

    Article  CAS  Google Scholar 

  6. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer. Nanotechnol Sci Appl 1:17–32

    CAS  Google Scholar 

  7. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  PubMed  CAS  Google Scholar 

  8. Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256

    Article  PubMed  CAS  Google Scholar 

  9. Bardhan R, Chen W, Perez-Torres C, Bartels M, Huschka RM, Zhao LL, Morosan E, Pautler RG, Joshi A, Halas NJ (2009) Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv Funct Mater 19:3901–3909

    Article  CAS  Google Scholar 

  10. Li L, Zhang Q, Liu A, Li X, Zhou H, Liu Y, Yan B (2011) Proteome interrogation using nanoprobes to identify targets of a cancer-killing molecule. J Am Chem Soc 133:6886–6889

    Article  PubMed  CAS  Google Scholar 

  11. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10:47–60

    Article  PubMed  CAS  Google Scholar 

  12. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  Google Scholar 

  13. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller C (2011) Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34

    Article  PubMed  CAS  Google Scholar 

  14. Madi L, Bar-Yehuda S, Barer F, Ardon E, Ochaion A, Fishman PA (2003) A3 adenosine receptor activation in melanoma cells. J Biol Chem 278:42121–42130

    Article  PubMed  CAS  Google Scholar 

  15. Yu L, Coelho JE, Zhang X, Fu Y, Tillman A, Karaoz U, Fredholm BB, Weng Z, Chen JF (2009) Uncovering multiple molecular targets for caffeine using a drug target validation strategy combining A2A receptor knockout mice with microarray profiling. Physiol Genomics 37:199–210

    Article  PubMed  CAS  Google Scholar 

  16. Smith NJ, Bennett KA, Milligan G (2011) When simple agonism is not enough: emerging modalities of GPCR ligands. Mol Cell Endocrinol 331:241–247

    Article  PubMed  CAS  Google Scholar 

  17. Tosh DK, Chinn M, Yoo LS, Kang DW, Luecke H, Gao ZG, Jacobson KA (2010) 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: “clickable” A3 adenosine receptor-selective agonists. Bioorg Med Chem 18:508–517

    Article  PubMed  CAS  Google Scholar 

  18. Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13987–13996

    Article  PubMed  CAS  Google Scholar 

  19. Kecskés A, Tosh DK, Wei Q, Gao ZG, Jacobson KA (2011) GPCR ligand dendrimer (GLiDe) conjugates: adenosine receptor interactions of a series of multivalent xanthine antagonists. Bioconjug Chem 22:1115–1127

    Article  PubMed  Google Scholar 

  20. Das A, Ko H, Burianek LE, Barrett MO, Harden TK, Jacobson KA (2010) Human P2Y14 receptor agonists: truncation of the hexose moiety of uridine-5′-diphosphoglucose and its replacement with alkyl and aryl groups. J Med Chem 53:471–480

    Article  PubMed  CAS  Google Scholar 

  21. Kumar TS, Mishra S, Deflorian F, Yoo SL, Phan K, Kecskés M, Szabo A, Shinkre B, Gao ZG, Trenkle W, Jacobson KA (2011) Molecular probes for the A2A adenosine receptor based on a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine scaffold. Bioorg Med Chem Lett 21:2740–2745

    Article  PubMed  CAS  Google Scholar 

  22. Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263

    Article  PubMed  CAS  Google Scholar 

  23. Das A, Sanjayan GJ, Kecskés M, Yoo L, Gao ZG, Jacobson KA (2010) Nucleoside conjugates of quantum dots for characterization of G protein-coupled receptors: strategies for immobilizing A2A adenosine receptor agonists. J Nanobiotechnol 8:11–40

    Article  Google Scholar 

  24. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell Interactions. Small 6:12–21

    Article  PubMed  CAS  Google Scholar 

  25. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed  CAS  Google Scholar 

  26. Gessi S, Varani K, Merighi S, Cattabriga E, Iannotta V, Leung E, Baraldi PG, Borea PA (2002) A3 adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. Mol Pharmacol 61:415–424

    Article  PubMed  CAS  Google Scholar 

  27. Gessi S, Merighi S, Varani K, Borea PA (2011) Adenosine receptors in health and disease. Adv Pharmacol 61:41–75

    Article  PubMed  CAS  Google Scholar 

  28. Jajoo S, Mukherjea D, Watabe K (2009) Adenosine A3 receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia 11:1132–1145

    PubMed  CAS  Google Scholar 

  29. Fishman P, Bar-Yehuda S, Synowitz M, Powell JD, Klotz KN, Gessi S, Borea PA (2009) Adenosine receptors and cancer. Handb Exp Pharmacol 193:399–441

    Article  PubMed  CAS  Google Scholar 

  30. Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26:552–558

    Article  PubMed  CAS  Google Scholar 

  31. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 65:8984–8992

    Article  PubMed  CAS  Google Scholar 

  32. Ohta A, Kjaergaard J, Sharma S, Mohsin M, Goel N, Madasu M, Fradkov E, Sitkovsky M (2009) In vitro induction of T cells that are resistant to A2 adenosine receptor-mediated immunosuppression. Br J Pharmacol 156:297–306

    Article  PubMed  CAS  Google Scholar 

  33. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7:169–183

    Article  PubMed  CAS  Google Scholar 

  34. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    Article  PubMed  CAS  Google Scholar 

  35. Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA (2008) Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnol 6:2

    Article  Google Scholar 

  36. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21:637–647

    Article  PubMed  CAS  Google Scholar 

  37. Henderson LC, Altimari JM, Dyson G, Servinis L, Niranjan B, Risbridger GP (2011) A comparative assessment of α-lipoic acid N-phenylamides as non-steroidal androgen receptor antagonists both on and off gold nanoparticles. Bioorg Chem 40:1–5

    Article  PubMed  Google Scholar 

  38. Nordstedt C, Fredholm BB (1990) A modification of a protein-binding method for rapid quantification of cAMP in cell-culture supernatants and body fluid. Anal Biochem 189:231–234

    Article  PubMed  CAS  Google Scholar 

  39. Longmire M, Choyke PL, Kobayshi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717

    Article  PubMed  CAS  Google Scholar 

  40. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    Article  PubMed  CAS  Google Scholar 

  41. Oh E, Susumu K, Goswami R, Mattoussi H (2010) One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities. Langmuir 26:7604–7613

    Article  PubMed  CAS  Google Scholar 

  42. Manea F, Bindoli C, Polizzi S, Lay L, Scrimin P (2008) Expeditious synthesis of water-soluble, monolayer-protected gold nanoparticles of controlled size and monolayer composition. Langmuir 24:4120–4124

    Article  PubMed  CAS  Google Scholar 

  43. Cohen S., Stemmer SM, Zozulya G, Ochaion, Patoka R, Barer F, Bar-Yehuda S, Rath-Wolfson L, Jacobson KA, Fishman P. (2011) CF102 an A3 adenosine receptor agonist mediates anti-tumor and antiinflammatory effects in the liver. J Cell Physoil 226:2438–2447

Download references

Acknowledgments

We thank Dr. Noel Whittaker (NIDDK) for MS measurements. This research was supported by the Intramural Research Programs of NIDDK and NCI, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information

Supporting information with details of the AuNP characterization and biological and stability assays is available online at http://. (DOCX 11420 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayasekara, P.S., Phan, K., Tosh, D.K. et al. Modulation of G protein-coupled adenosine receptors by strategically functionalized agonists and antagonists immobilized on gold nanoparticles. Purinergic Signalling 9, 183–198 (2013). https://doi.org/10.1007/s11302-012-9338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9338-z

Keywords

Navigation