Skip to main content
Log in

Role of pertussis toxin-sensitive G-protein, K+ channels, and voltage-gated Ca2+ channels in the antinociceptive effect of inosine

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Inosine is the first metabolite of adenosine. It exerts an antinociceptive effect by activating the adenosine A1 and A2A receptors. We have previously demonstrated that inosine exhibits antinociceptive properties in acute and chronic mice models of nociception. The aim of this study was to investigate the involvement of pertussis toxin-sensitive G-protein-coupled receptors, as well as K+ and Ca2+ channels, in the antinociception promoted by inosine in the formalin test. Mice were pretreated with pertussis toxin (2.5 μg/site, i.t., an inactivator of Gi/0 protein); after 7 days, they received inosine (10 mg/kg, i.p.) or morphine (2.5 mg/kg, s.c., used as positive control) immediately before the formalin test. Another group of animals received tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (1 μg/site, i.t., a non-specific voltage-gated K+ channel blockers), apamin (50 ng/site, i.t., a small conductance Ca2+-activated K+ channel blocker), charybdotoxin (250 pg/site, i.t., a large-conductance Ca2+-activated K+ channel blocker), glibenclamide (100 μg/site, i.t., an ATP-sensitive K+ channel blocker) or CaCl2 (200 nmol/site, i.t.). Afterwards, the mice received inosine (10 mg/kg, i.p.), diclofenac (10 mg/kg, i.p., a positive control), or morphine (2.5 mg/kg, s.c., a positive control) immediately before the formalin test. The antinociceptive effect of inosine was reversed by the pre-administration of pertussis toxin (2.5 μg/site, i.t.), TEA, 4-aminopyridine, charybdotoxin, glibenclamide, and CaCl2, but not apamin. Further, all K+ channel blockers and CaCl2 reversed the antinociception induced by diclofenac and morphine, respectively. Taken together, these data suggest that the antinociceptive effect of inosine is mediated, in part, by pertussis toxin-sensitive G-protein coupled receptors and the subsequent activation of voltage gated K+ channel, large conductance Ca2+-activated and ATP-sensitive K+ channels or inactivation of voltage-gated Ca2+ channels. Finally, small conductance Ca2+-activated K+ channels are not involved in the antinociceptive effect of inosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barankiewicz J, Cohen A (1985) Purine nucleotide metabolism in resident and activated rat macrophages in vitro. Eur J Immunol 15:627–631

    Article  PubMed  CAS  Google Scholar 

  2. Mabley JG, Pacher P, Liaudet L, Soriano FG, Haskó G, Marton A, Szabo C, Salzman AL (2003) Inosine reduces inflammation and improves survival in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 284:138–144

    Google Scholar 

  3. Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340

    Article  PubMed  CAS  Google Scholar 

  4. Hasko G, Sitkovsky MV, Szabó C (2004) Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 25:152–157

    Article  PubMed  CAS  Google Scholar 

  5. Aviado DM (1983) Inosine: a naturally occurring cardiotonic agent. J Pharmacol 4:47–71

    Google Scholar 

  6. Jones CE, Thomas JX Jr, Devous MD, Norris CP, Smith EE (1977) Positive inotropic response to inosine in the in situ canine heart. Am J Physiol 233:438–443

    Google Scholar 

  7. Seesko RC, Zimmer GH (1990) Hemodynamic effects of inosine in combination with positive and negative inotropic drugs: studies on rats in vivo. J Cardiovasc Pharmacol 16:249–256

    Article  PubMed  CAS  Google Scholar 

  8. Gomez G, Sitkovsky MV (2003) Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102:4472–4478

    Article  PubMed  CAS  Google Scholar 

  9. Garcia Soriano F, Liaudet L, Marton A, Haskó G, Batista Lorigados C, Deitch EA, Szabó C (2001) Inosine improves gut permeability and vascular reactivity in endotoxic shock. Crit Care Med 29:703–708

    Article  PubMed  CAS  Google Scholar 

  10. Marton A, Pacher P, Murthy KG, Németh ZH, Haskó G, Szabó C (2001) Anti-inflammatory effects of inosine in human monocytes, neutrophils and epithelial cells in vitro. Int J Mol Med 8:617–621

    PubMed  CAS  Google Scholar 

  11. Nascimento FP, Figueredo SM, Marcon R, Martins DF, Macedo SJ Jr, Lima DAN, Almeida RC, Ostroski RM, Rodrigues ALS, Santos ARS (2010) Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways. J Pharmacol Exp Ther 334:590–598

    Article  PubMed  CAS  Google Scholar 

  12. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  PubMed  CAS  Google Scholar 

  13. Jacobson KA, Gao GZ (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  Google Scholar 

  14. Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347:1–11

    Article  PubMed  CAS  Google Scholar 

  15. Cunha RA, Ferre S, Vaugeois JM, Chen JF (2008) Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 14:1512–1524

    Article  PubMed  CAS  Google Scholar 

  16. Fredholm BB, Cunha RA, Svenningsson P (2003) Pharmacology of adenosine A2A receptors and therapeutic applications. Curr Top Med Chem 3:413–426

    Article  PubMed  CAS  Google Scholar 

  17. North RA (1989) Drug receptors and the inhibition of nerve cells. Br J Pharmacol 98:13–28

    Article  PubMed  CAS  Google Scholar 

  18. Perez-Reyes E (2010) G protein-mediated inhibition of Cav3.2 T-type channels revisited. Mol Pharmacol 77:136–138

    Article  PubMed  CAS  Google Scholar 

  19. Zamponi GW, Snutch TP (1998) Modulation of voltage-dependent calcium channels by G proteins. Curr Opin Neurobiol 8:351–356

    Article  PubMed  CAS  Google Scholar 

  20. Hylden JL, Wilcox GL (1980) Intrathecal morphine in mice. A new technique. Eur J Pharmacol 67:313–316

    Article  PubMed  CAS  Google Scholar 

  21. Hunskaar S, Fasmer OB, Hole K (1985) Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Methods 14:69–76

    Article  PubMed  CAS  Google Scholar 

  22. Meotti FC, Fachinetto R, Maffi LC, Missau FC, Pizzolatti MG, Rocha JBT, Santos ARS (2007) Antinociceptive action of myricitrin: involvement of the K+ and Ca2+ channels. Eur J Pharmacol 567:198–205

    Article  PubMed  CAS  Google Scholar 

  23. Ortiz MI, Lozano-Cuenca J, Granados-Soto V, Castañeda-Hernández G (2008) Additive interaction between peripheral and central mechanisms involved in the antinociceptive effect of diclofenac in the formalin test in rats. Pharmacol Biochem Behav 91:32–37

    Article  PubMed  CAS  Google Scholar 

  24. Hoehn K, Reid A, Sawynok J (1988) Pertussis toxin inhibits antinociception produced by intrathecal injection of morphine, noradrenaline and baclofen. Eur J Pharmacol 146:65–72

    Article  PubMed  CAS  Google Scholar 

  25. Prather PL, Loh HH, Law PY (1994) Interaction of delta-opioid receptors with multiple G proteins: a non-relationship between agonist potency to inhibit adenylyl cyclase and to activate G proteins. Mol Pharmacol 45:997–1003

    PubMed  CAS  Google Scholar 

  26. Smart D, Hirst RA, Hirota K, Grand DK, Lambert DG (1997) The effects of recombinant rat mu-opioid receptor activation in CHO cells on phospholipase C, [Ca2+]i and adenylyl cyclase. Br J Pharmacol 120:1165–1171

    Article  PubMed  CAS  Google Scholar 

  27. Rodrigues AR, Duarte ID (2000) The peripheral antinociceptive effect induced by morphine is associated with ATP-sensitive K(+) channels. Br J Pharmacol 129:110–114

    Article  PubMed  CAS  Google Scholar 

  28. Dolphin AC, Prestwich SA (1985) Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 316:148–150

    Article  PubMed  CAS  Google Scholar 

  29. Ocaña M, Cendán CM, Cobos EJ, Entrena JM, Baeyens JM (2004) Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol 500:203–219

    Article  PubMed  Google Scholar 

  30. Sanchez JA, Gonoi T, Inagaki N, Katada T, Seino S (1998) Modulation of reconstituted ATP-sensitive K+ channels by GTP-binding proteins in a mammalian cell line. J Physiol 507:315–324

    Article  PubMed  CAS  Google Scholar 

  31. Ocaña M, Baeyens JM (1994) Role of ATP-sensitive K+ channels in antinociception induced by R-PIA, an adenosine A1 receptor agonist. Naunyn Schmiedebergs Arch pharmacol 350:57–62

    Article  PubMed  Google Scholar 

  32. Robles LI, Barrios M, Del Pozo E, Dordal A, Baeyens JM (1996) Effects of K+ channel blockers and openers on antinociception induced by agonists of 5-HT1A receptors. Eur J Pharmacol 295:181–188

    Article  PubMed  CAS  Google Scholar 

  33. Gutman GA, Chandy KG, Aldeman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O'Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS (2003) International Union of Pharmacology: XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol Rev 55:583–586

    Article  PubMed  CAS  Google Scholar 

  34. Ortiz MI, Castañeda-Hernández G, Granados-Soto V (2005) Pharmacological evidence for the activation of Ca2+-activated K+ channels by meloxicam in the formalin test. Pharmacol Biochem Behav 81:725–731

    Article  PubMed  CAS  Google Scholar 

  35. Yalcin I, Asku F (2005) Involvement of potassium channels and nitric oxide in tramadol antinociception. Pharmacol Biochem Behav 80:69–75

    Article  PubMed  CAS  Google Scholar 

  36. Ortiz MI, Torres-López JE, Castañeda-Hernández G, Rosas R, Vidal-Cantú GC, Granados-Soto V (2002) Pharmacological evidence for the activation of K+ channels by diclofenac. Eur J Pharmacol 438:85–91

    Article  PubMed  CAS  Google Scholar 

  37. Lázaro-Ibáñez GG, Torres-López JE, Granados-Soto V (2001) Participation of the nitric oxide-cyclic GMP-ATP-sensitive K+ channel pathway in the antinociceptive action of ketorolac. Eur J Pharmacol 426:39–44

    Article  PubMed  Google Scholar 

  38. Alves D, Duarte I (2002) Involvement of ATP-sensitive K+ channels in the peripheral antinociceptive effect induced by dipyrone. Eur J Pharmacol 444:47–52

    Article  PubMed  CAS  Google Scholar 

  39. Ortiz MI, Granados-Soto V, Castañeda-Hernández G (2003) The NOcGMP-K+ channel pathway participates in the antinociceptive effect of diclofenac, but not of indomethacin. Pharmacol Biochem Behav 76:187–195

    Article  PubMed  CAS  Google Scholar 

  40. Déciga-Campos M, López-Muñoz FJ (2004) Participation of the l-arginine-nitric oxide-cyclic GMP-ATP-sensitive K+ channel cascade in the antinociceptive effect of rofecoxib. Eur J Pharmacol 484:193–199

    Article  PubMed  Google Scholar 

  41. Soares AC, Duarte ID (2001) Dibutyryl-cyclic GMP induces peripheral antinociception via activation of ATP-sensitive K(+) channels in the rat PGE2-induced hyperalgesic paw. Br J Pharmacol 134:127–131

    Article  PubMed  CAS  Google Scholar 

  42. Price M, Lee SC, Deutsch C (1989) Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci 86:10171–10175

    Article  PubMed  CAS  Google Scholar 

  43. Possani LD, Selisko B, Gurrola GB (1999) Structure and function of scorpion toxins affecting K+-channels. Perspect Drug Disc Des 15(16):15–40

    Article  Google Scholar 

  44. Hu H, Shao LR, Chavoshy S et al (2001) Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21:9585–9597

    PubMed  CAS  Google Scholar 

  45. McGivern JG, McDonough SI (2004) Voltage-gated calcium channels as targets for the treatment of chronic pain. Curr Drug Targets CNS Neurol Disord 3:457–478

    Article  PubMed  CAS  Google Scholar 

  46. Vanegas H, Schaible H (2000) Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia. Pain 85:9–18

    Article  PubMed  CAS  Google Scholar 

  47. Yaksh TL (2006) Calcium channels as therapeutic targets in neuropathic pain. J Pain 7:S13–S30

    PubMed  CAS  Google Scholar 

  48. Prado WA (2001) Involvement of calcium in pain and antinociception. Braz J Med Biol Res 34:449–461

    Article  PubMed  CAS  Google Scholar 

  49. Cervero F, Laird JMA (2003) Role of ions channels in mechanisms controlling gastrointestinal pain pathways. Curr Opin Pharmacol 3:608–612

    Article  PubMed  CAS  Google Scholar 

  50. Ward DT (2004) Calcium receptor-mediated intracellular signalling. Cell Calcium 35:217–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível superior (CAPES), Brazil. F.P. Nascimento is a Ph.D. student in Pharmacology; S. J. Macedo-Junior Msc. student in Pharmacology and M. Luiz-Cerutti Msc. student in Neuroscience. They thank CNPq and CAPES for financial support. Dr. A.R.S. Santos is a CNPq recognized researcher (1C category) and has additional financial support from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adair Roberto Soares Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macedo-Junior, S.J., Nascimento, F.P., Luiz-Cerutti, M. et al. Role of pertussis toxin-sensitive G-protein, K+ channels, and voltage-gated Ca2+ channels in the antinociceptive effect of inosine. Purinergic Signalling 9, 51–58 (2013). https://doi.org/10.1007/s11302-012-9327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9327-2

Keywords

Navigation