Skip to main content

Advertisement

Log in

Purinergic trophic signalling in glial cells: functional effects and modulation of cell proliferation, differentiation, and death

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

In the last decades, the discovery that glial cells do not only fill in the empty space among neurons or furnish them with trophic support but are rather essential participants to the various activities of the central and peripheral nervous system has fostered the search for the signalling pathways controlling their functions. Since the early 1990s, purines were foreseen as some of the most promising candidate molecules. Originally just a hypothesis, this has become a certainty as experimental evidence accumulated over years, as demonstrated by the exponentially growing number of articles related to the role of extracellular nucleotides and nucleosides in controlling glial cell functions. Indeed, as new functions for already known glial cells (for example, the ability of parenchymal astrocytes to behave as stem cells) or new subtypes of glial cells (for example, NG2+ cells, also called polydendrocytes) are discovered also, new actions and new targets for the purinergic system are identified. Thus, glial purinergic receptors have emerged as new possible pharmacological targets for various acute and chronic pathologies, such as stroke, traumatic brain and spinal cord injury, demyelinating diseases, trigeminal pain and migraine, and retinopathies. In this article, we will summarize the most important and promising actions mediated by extracellular purines and pyrimidines in controlling the functions, survival, and differentiation of the various “classical” types of glial cells (i.e., astrocytes, oligodendrocytes, microglial cells, Müller cells, satellite glial cells, and enteric glial cells) but also of some rather new members of the family (e.g., polydendrocytes) and of other cells somehow related to glial cells (e.g., pericytes and spinal cord ependymal cells).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29

    Article  PubMed  CAS  Google Scholar 

  2. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278(2):1354–1362

    Article  PubMed  CAS  Google Scholar 

  3. Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39(3):190–208

    Article  PubMed  CAS  Google Scholar 

  4. Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaule C (2011) Circadian regulation of ATP release in astrocytes. J Neurosci 31(23):8342–8350

    Article  PubMed  CAS  Google Scholar 

  5. Fumagalli M, Brambilla R, D’Ambrosi N, Volontè C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43(3):218–230

    Article  Google Scholar 

  6. Abbracchio MP, Verderio C (2006) Pathophysiological roles of P2 receptors in glial cells. Novartis Found Symp 276:91–103

    Article  PubMed  CAS  Google Scholar 

  7. Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79(2):77–89

    Article  PubMed  CAS  Google Scholar 

  8. Abbracchio MP, Saffrey MJ, Hopker V, Burnstock G (1994) Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience 59(1):67–76

    Article  PubMed  CAS  Google Scholar 

  9. Abbracchio MP, Ceruti S, Langfelder R, Cattabeni F, Saffrey MJ, Burnstock G (1995) Effects of ATP analogues and basic fibroblast growth factor on astroglial cell differentiation in primary cultures of rat striatum. Int J Dev Neurosci 13(7):685–693

    Article  PubMed  CAS  Google Scholar 

  10. Brambilla R, Burnstock G, Bonazzi A, Ceruti S, Cattabeni F, Abbracchio MP (1999) Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br J Pharmacol 126(3):563–567

    Article  PubMed  CAS  Google Scholar 

  11. Brambilla R, Ceruti S, Malorni W, Cattabeni F, Abbracchio MP (2000) A novel gliotic P2 receptor mediating cyclooxygenase-2 induction in rat and human astrocytes. J Auton Nerv Syst 81(1–3):3–9

    Article  PubMed  CAS  Google Scholar 

  12. Neary JT, Kang Y, Shi YF, Tran MD, Wanner IB (2006) P2 receptor signalling, proliferation of astrocytes, and expression of molecules involved in cell-cell interactions. Novartis Found Symp 276:131–143

    Article  PubMed  CAS  Google Scholar 

  13. Franke H, Sauer C, Rudolph C, Krugel U, Hengstler JG, Illes P (2009) P2 receptor-mediated stimulation of the PI3-K/Akt-pathway in vivo. Glia 57(10):1031–1045

    Article  PubMed  CAS  Google Scholar 

  14. Kuboyama K, Harada H, Tozaki-Saitoh H, Tsuda M, Ushijima K, Inoue K (2011) Astrocytic P2Y(1) receptor is involved in the regulation of cytokine/chemokine transcription and cerebral damage in a rat model of cerebral ischemia. J Cereb Blood Flow Metab 31:1930-1941

  15. Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, Gonzalez FA, Seye CI, Erb L (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31(1–3):169–183

    Article  PubMed  CAS  Google Scholar 

  16. Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal 2(4):595–604

    Article  PubMed  CAS  Google Scholar 

  17. Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, Erb L, Petris MJ, Weisman GA (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41(2–3):356–366

    Article  PubMed  CAS  Google Scholar 

  18. Tran MD (2011) P2 receptor stimulation induces amyloid precursor protein production and secretion in rat cortical astrocytes. Neurosci Lett 492(3):155–159

    Article  PubMed  CAS  Google Scholar 

  19. Fumagalli M, Lecca D, Abbracchio MP (2011) Role of purinergic signalling in neuro-immune cells and adult neural progenitors. Front Biosci 17:2326–2341

    Article  PubMed  Google Scholar 

  20. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23(27):9254–9262

    PubMed  CAS  Google Scholar 

  21. Lecca D, Ceruti S (2008) Uracil nucleotides: from metabolic intermediates to neuroprotection and neuroinflammation. Biochem Pharmacol 75(10):1869–1881

    Article  PubMed  CAS  Google Scholar 

  22. Bjelobaba I, Parabucki A, Lavrnja I, Stojkov D, Dacic S, Pekovic S, Rakic L, Stojiljkovic M, Nedeljkovic N (2011) Dynamic changes in the expression pattern of ecto-5′-nucleotidase in the rat model of cortical stab injury. J Neurosci Res 89(6):862–873

    Article  PubMed  CAS  Google Scholar 

  23. Ciccarelli R, D’Alimonte I, Ballerini P, D’Auro M, Nargi E, Buccella S, Di Iorio P, Bruno V, Nicoletti F, Caciagli F (2007) Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes. Mol Pharmacol 71(5):1369–1380

    Article  PubMed  CAS  Google Scholar 

  24. Hindley S, Herman MA, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38(4):399–406

    Article  PubMed  CAS  Google Scholar 

  25. Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43(2):190–194

    Article  PubMed  Google Scholar 

  26. Trincavelli ML, Marroni M, Tuscano D, Ceruti S, Mazzola A, Mitro N, Abbracchio MP, Martini C (2004) Regulation of A2B adenosine receptor functioning by tumour necrosis factor a in human astroglial cells. J Neurochem 91(5):1180–1190

    Article  PubMed  CAS  Google Scholar 

  27. Abbracchio MP, Ceruti S, Brambilla R, Barbieri D, Camurri A, Franceschi C, Giammarioli A, Jacobson KA, Cattabeni F, Malorni W (1998) Adenosine A3 receptors and viability of astrocytes. Drug Dev Res 45:379–386

    Article  CAS  Google Scholar 

  28. Von Lubitz DK, Simpson KL, Lin RC (2001) Right thing at a wrong time? Adenosine A3 receptors and cerebroprotection in stroke. Ann N Y Acad Sci 939:85–96

    Article  Google Scholar 

  29. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  PubMed  CAS  Google Scholar 

  30. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A 96(20):11619–11624

    Article  PubMed  CAS  Google Scholar 

  31. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278

    Article  PubMed  CAS  Google Scholar 

  32. Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56(14):1552–1565

    Article  PubMed  Google Scholar 

  33. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330(6005):779–782

    Article  PubMed  CAS  Google Scholar 

  34. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252

    Article  PubMed  CAS  Google Scholar 

  35. Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370

    Article  PubMed  CAS  Google Scholar 

  36. Lee PR, Fields RD (2009) Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons. Front Neuroanat 3:4

    Article  PubMed  CAS  Google Scholar 

  37. Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23(12):625–633

    Article  PubMed  CAS  Google Scholar 

  38. Stevens B, Fields RD (2000) Response of Schwann cells to action potentials in development. Science 287(5461):2267–2271

    Article  PubMed  CAS  Google Scholar 

  39. Ansselin AD, Davey DF, Allen DG (1997) Extracellular ATP increases intracellular calcium in cultured adult Schwann cells. Neuroscience 76(3):947–955

    Article  PubMed  CAS  Google Scholar 

  40. Lyons SA, Morell P, McCarthy KD (1995) Schwann cell ATP-mediated calcium increases in vitro and in situ are dependent on contact with neurons. Glia 13(1):27–38

    Article  PubMed  CAS  Google Scholar 

  41. Mayer C, Quasthoff S, Grafe P (1998) Differences in the sensitivity to purinergic stimulation of myelinating and non-myelinating Schwann cells in peripheral human and rat nerve. Glia 23(4):374–382

    Article  PubMed  CAS  Google Scholar 

  42. Grafe P, Mayer C, Takigawa T, Kamleiter M, Sanchez-Brandelik R (1999) Confocal calcium imaging reveals an ionotropic P2 nucleotide receptor in the paranodal membrane of rat Schwann cells. J Physiol 515(Pt 2):377–383

    Article  PubMed  CAS  Google Scholar 

  43. Rousse I, Robitaille R (2006) Calcium signaling in Schwann cells at synaptic and extra-synaptic sites: active glial modulation of neuronal activity. Glia 54(7):691–699

    Article  PubMed  Google Scholar 

  44. Stevens B, Ishibashi T, Chen JF, Fields RD (2004) Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biol 1(1):23–34

    Article  PubMed  Google Scholar 

  45. Wachtler J, Mayer C, Grafe P (1998) Activity-dependent intracellular Ca2+ transients in unmyelinated nerve fibres of the isolated adult rat vagus nerve. Pflugers Arch 435(5):678–686

    Article  PubMed  CAS  Google Scholar 

  46. Verderio C, Bianco F, Blanchard MP, Bergami M, Canossa M, Scarfone E, Matteoli M (2006) Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration. Brain Cell Biol 35(2–3):187–201

    PubMed  CAS  Google Scholar 

  47. Zimmermann H, Braun N, Kegel B, Heine P (1998) New insights into molecular structure and function of ectonucleotidases in the nervous system. Neurochem Int 32(5–6):421–425

    Article  PubMed  CAS  Google Scholar 

  48. Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7(1):11–18

    Article  PubMed  CAS  Google Scholar 

  49. de Castro F, Bribian A (2005) The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res Brain Res Rev 49(2):227–241

    Article  PubMed  CAS  Google Scholar 

  50. Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36(5):855–868

    Article  PubMed  CAS  Google Scholar 

  51. Othman T, Yan H, Rivkees SA (2003) Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration. Glia 44(2):166–172

    Article  PubMed  Google Scholar 

  52. Takeda M, Nelson DJ, Soliven B (1995) Calcium signaling in cultured rat oligodendrocytes. Glia 14(3):225–236

    Article  PubMed  CAS  Google Scholar 

  53. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonte C, Aloisi F, Visentin S (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50(2):132–144

    Article  PubMed  CAS  Google Scholar 

  54. Fumagalli M, Daniele S, Lecca D, Lee PR, Parravicini C, Fields RD, Rosa P, Antonucci F, Verderio C, Trincavelli ML, Bramanti P, Martini C, Abbracchio MP (2011) Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. J Biol Chem 286(12):10593–10604

    Article  PubMed  CAS  Google Scholar 

  55. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49(6):823–832

    Article  PubMed  CAS  Google Scholar 

  56. Stankoff B, Aigrot MS, Noel F, Wattilliaux A, Zalc B, Lubetzki C (2002) Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. J Neurosci 22(21):9221–9227

    PubMed  CAS  Google Scholar 

  57. Amadio S, Tramini G, Martorana A, Viscomi MT, Sancesario G, Bernardi G, Volonte C (2006) Oligodendrocytes express P2Y12 metabotropic receptor in adult rat brain. Neuroscience 141(3):1171–1180

    Article  PubMed  CAS  Google Scholar 

  58. Amadio S, Montilli C, Magliozzi R, Bernardi G, Reynolds R, Volonte C (2010) P2Y12 receptor protein in cortical gray matter lesions in multiple sclerosis. Cereb Cortex 20(6):1263–1273

    Article  PubMed  Google Scholar 

  59. Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerrini U, Belcredito S, Cimino M, Sironi L, Tremoli E, Rovati GE, Martini C, Abbracchio MP (2006) The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 25(19):4615–4627

    Article  PubMed  CAS  Google Scholar 

  60. Benned-Jensen T, Rosenkilde MM (2010) Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants. Br J Pharmacol 159(5):1092–1105

    Article  PubMed  CAS  Google Scholar 

  61. Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, Villa G, Verderio C, Grumelli C, Guerrini U, Tremoli E, Rosa P, Cuboni S, Martini C, Buffo A, Cimino M, Abbracchio MP (2008) The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One 3(10):e3579

    Article  PubMed  CAS  Google Scholar 

  62. Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, Hoang J, Escobar SS, Gow A, Arnett HA, Trapp BD, Karandikar NJ, Hsieh J, Lu QR (2009) The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci 12(11):1398–1406

    Article  PubMed  CAS  Google Scholar 

  63. Ceruti S, Viganò F, Boda E, Ferrario S, Magni G, Boccazzi M, Rosa P, Buffo A, Abbracchio MP (2011) Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 59(3):363–378

    Article  PubMed  Google Scholar 

  64. Pugliese AM, Trincavelli ML, Lecca D, Coppi E, Fumagalli M, Ferrario S, Failli P, Daniele S, Martini C, Pedata F, Abbracchio MP (2009) Functional characterization of two isoforms of the P2Y-like receptor GPR17: [35S]GTPgammaS binding and electrophysiological studies in 1321N1 cells. Am J Physiol Cell Physiol 297(4):C1028–C1040

    Article  PubMed  CAS  Google Scholar 

  65. Ceruti S, Villa G, Genovese T, Mazzon E, Longhi R, Rosa P, Bramanti P, Cuzzocrea S, Abbracchio MP (2009) The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain 132(Pt 8):2206–2218

    Article  PubMed  Google Scholar 

  66. Boda E, Viganò F, Rosa P, Fumagalli M, Labat-gest V, Tempia F, Abbracchio MP, Dimou L, Buffo A (2011) The GPR17 receptor in NG2 expressing cells: focus on in vivo cell maturation and participation in acute trauma and chronic damage. Glia 59:1958–1973

    Google Scholar 

  67. Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodriguez-Antiguedad A, Sanchez-Gomez M, Domercq M (2007) P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27(35):9525–9533

    Article  PubMed  CAS  Google Scholar 

  68. Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C (2010) P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58(6):730–740

    PubMed  Google Scholar 

  69. Nishiyama A, Chang A, Trapp BD (1999) NG2+ glial cells: a novel glial cell population in the adult brain. J Neuropathol Exp Neurol 58(11):1113–1124

    Article  PubMed  CAS  Google Scholar 

  70. Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G 2nd, Roy NS, Goldman SA (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 10(1):93–97

    Article  PubMed  CAS  Google Scholar 

  71. Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10(1):9–22

    Article  PubMed  CAS  Google Scholar 

  72. Butt AM, Duncan A, Hornby MF, Kirvell SL, Hunter A, Levine JM, Berry M (1999) Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 26(1):84–91

    Article  PubMed  CAS  Google Scholar 

  73. Ong WY, Levine JM (1999) A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate-lesioned rat hippocampus. Neuroscience 92(1):83–95

    Article  PubMed  CAS  Google Scholar 

  74. Nishiyama A, Watanabe M, Yang Z, Bu J (2002) Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells. J Neurocytol 31(6–7):437–455

    Article  PubMed  CAS  Google Scholar 

  75. Butt AM, Kiff J, Hubbard P, Berry M (2002) Synantocytes: new functions for novel NG2 expressing glia. J Neurocytol 31(6–7):551–565

    Article  PubMed  CAS  Google Scholar 

  76. Butt AM, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005) Synantocytes: the fifth element. J Anat 207(6):695–706

    Article  PubMed  Google Scholar 

  77. Hamilton N, Vayro S, Wigley R, Butt AM (2010) Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58(1):66–79

    Article  PubMed  Google Scholar 

  78. Belachew S, Gallo V (2004) Synaptic and extrasynaptic neurotransmitter receptors in glial precursors’ quest for identity. Glia 48(3):185–196

    Article  PubMed  Google Scholar 

  79. Nishiyama A (2007) Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist 13(1):62–76

    Article  PubMed  CAS  Google Scholar 

  80. Ciceri P, Rabuffetti M, Monopoli A, Nicosia S (2001) Production of leukotrienes in a model of focal cerebral ischaemia in the rat. Br J Pharmacol 133(8):1323–1329

    Article  PubMed  CAS  Google Scholar 

  81. Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M, Pedata F (2005) ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 47(6):442–448

    Article  PubMed  CAS  Google Scholar 

  82. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997) Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185(3):579–582

    Article  PubMed  CAS  Google Scholar 

  83. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24(1):1–7

    Article  PubMed  CAS  Google Scholar 

  84. Lai AY, Todd KG (2008) Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury. Glia 56(3):259–270

    Article  PubMed  Google Scholar 

  85. Sperlagh B, Illes P (2007) Purinergic modulation of microglial cell activation. Purinergic Signal 3(1–2):117–127

    Article  PubMed  CAS  Google Scholar 

  86. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10(8):821–827

    Article  PubMed  CAS  Google Scholar 

  87. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  PubMed  CAS  Google Scholar 

  88. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  PubMed  CAS  Google Scholar 

  89. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21(6):1975–1982

    PubMed  CAS  Google Scholar 

  90. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519

    Article  PubMed  CAS  Google Scholar 

  91. Rouach N, Calvo CF, Glowinski J, Giaume C (2002) Brain macrophages inhibit gap junctional communication and downregulate connexin 43 expression in cultured astrocytes. Eur J Neurosci 15(2):403–407

    Article  PubMed  CAS  Google Scholar 

  92. McIlvain HB, Ma L, Ludwig B, Manners MT, Martone RL, Dunlop J, Kaftan EJ, Kennedy JD, Whiteside GT (2010) Purinergic receptor-mediated morphological changes in microglia are transient and independent from inflammatory cytokine release. Eur J Pharmacol 643(2–3):202–210

    Article  PubMed  CAS  Google Scholar 

  93. Di Virgilio F (2000) Dr. Jekyll/Mr. Hyde: the dual role of extracellular ATP. J Auton Nerv Syst 81(1–3):59–63

    Article  PubMed  Google Scholar 

  94. Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, Fellin R, Trabace L, Di Virgilio F (2009) Activation of microglia by amyloid {beta} requires P2X7 receptor expression. J Immunol 182(7):4378–4385

    Article  PubMed  CAS  Google Scholar 

  95. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095

    Article  PubMed  CAS  Google Scholar 

  96. Gyoneva S, Orr AG, Traynelis SF (2009) Differential regulation of microglial motility by ATP/ADP and adenosine. Parkinsonism Relat Disord 15(Suppl 3):S195–S199

    Article  PubMed  Google Scholar 

  97. Monif M, Burnstock G, Williams DA (2010) Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 42(11):1753–1756

    Article  PubMed  CAS  Google Scholar 

  98. Di Virgilio F, Sanz JM, Chiozzi P, Falzoni S (1999) The P2Z/P2X7 receptor of microglial cells: a novel immunomodulatory receptor. Prog Brain Res 120:355–368

    Article  PubMed  Google Scholar 

  99. Tessier PA, Naccache PH, Clark-Lewis I, Gladue RP, Neote KS, McColl SR (1997) Chemokine networks in vivo: involvement of C-X-C and C-C chemokines in neutrophil extravasation in vivo in response to TNF-alpha. J Immunol 159(7):3595–3602

    PubMed  CAS  Google Scholar 

  100. Shiratori M, Tozaki-Saitoh H, Yoshitake M, Tsuda M, Inoue K (2010) P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. J Neurochem 114(3):810–819

    Article  PubMed  CAS  Google Scholar 

  101. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, Faber-Zuschratter H, Schneider D, Illes P (2004) P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 63(7):686–699

    PubMed  CAS  Google Scholar 

  102. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12

    Article  PubMed  CAS  Google Scholar 

  103. Adinolfi E, Melchiorri L, Falzoni S, Chiozzi P, Morelli A, Tieghi A, Cuneo A, Castoldi G, Di Virgilio F, Baricordi OR (2002) P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99(2):706–708

    Article  PubMed  CAS  Google Scholar 

  104. Bianco F, Ceruti S, Colombo A, Fumagalli M, Ferrari D, Pizzirani C, Matteoli M, Di Virgilio F, Abbracchio MP, Verderio C (2006) A role for P2X7 in microglial proliferation. J Neurochem 99(3):745–758

    Article  PubMed  CAS  Google Scholar 

  105. Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29(12):3781–3791

    Article  PubMed  CAS  Google Scholar 

  106. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424

    Article  PubMed  CAS  Google Scholar 

  107. Bringmann A, Wiedemann P (2009) Involvement of Muller glial cells in epiretinal membrane formation. Graefes Arch Clin Exp Ophthalmol 247(7):865–883

    Article  PubMed  Google Scholar 

  108. Wurm A, Pannicke T, Iandiev I, Francke M, Hollborn M, Wiedemann P, Reichenbach A, Osborne NN, Bringmann A (2011) Purinergic signaling involved in Muller cell function in the mammalian retina. Prog Retin Eye Res 30(5):324–342

    Article  PubMed  CAS  Google Scholar 

  109. Pannicke T, Fischer W, Biedermann B, Schadlich H, Grosche J, Faude F, Wiedemann P, Allgaier C, Illes P, Burnstock G, Reichenbach A (2000) P2X7 receptors in Muller glial cells from the human retina. J Neurosci 20(16):5965–5972

    PubMed  CAS  Google Scholar 

  110. Innocenti B, Pfeiffer S, Zrenner E, Kohler K, Guenther E (2004) ATP-induced non-neuronal cell permeabilization in the rat inner retina. J Neurosci 24(39):8577–8583

    Article  PubMed  CAS  Google Scholar 

  111. Uckermann O, Wolf A, Kutzera F, Kalisch F, Beck-Sickinger AG, Wiedemann P, Reichenbach A, Bringmann A (2006) Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide Y. J Neurosci Res 83(4):538–550

    Article  PubMed  CAS  Google Scholar 

  112. Wurm A, Pannicke T, Iandiev I, Buhner E, Pietsch UC, Reichenbach A, Wiedemann P, Uhlmann S, Bringmann A (2006) Changes in membrane conductance play a pathogenic role in osmotic glial cell swelling in detached retinas. Am J Pathol 169(6):1990–1998

    Article  PubMed  CAS  Google Scholar 

  113. Wurm A, Pannicke T, Wiedemann P, Reichenbach A, Bringmann A (2008) Glial cell-derived glutamate mediates autocrine cell volume regulation in the retina: activation by VEGF. J Neurochem 104(2):386–399

    PubMed  CAS  Google Scholar 

  114. Newman EA, Zahs KR (1998) Modulation of neuronal activity by glial cells in the retina. J Neurosci 18(11):4022–4028

    PubMed  CAS  Google Scholar 

  115. Newman EA (2005) Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci 25(23):5502–5510

    Article  PubMed  CAS  Google Scholar 

  116. Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275(5301):844–847

    Article  PubMed  CAS  Google Scholar 

  117. Guidry C (2005) The role of Muller cells in fibrocontractive retinal disorders. Prog Retin Eye Res 24(1):75–86

    Article  PubMed  CAS  Google Scholar 

  118. Bringmann A, Pannicke T, Moll V, Milenkovic I, Faude F, Enzmann V, Wolf S, Reichenbach A (2001) Upregulation of P2X(7) receptor currents in Muller glial cells during proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 42(3):860–867

    PubMed  CAS  Google Scholar 

  119. Uhlmann S, Bringmann A, Uckermann O, Pannicke T, Weick M, Ulbricht E, Goczalik I, Reichenbach A, Wiedemann P, Francke M (2003) Early glial cell reactivity in experimental retinal detachment: effect of suramin. Invest Ophthalmol Vis Sci 44(9):4114–4122

    Article  PubMed  Google Scholar 

  120. Bull ND, Martin KR (2011) Concise review: toward stem cell-based therapies for retinal neurodegenerative diseases. Stem Cells 29(8):1170–1175

    Article  PubMed  Google Scholar 

  121. Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, Khaw PT, Limb GA (2007) MIO-M1 cells and similar Müller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 25(8):2033–2043

    Article  PubMed  CAS  Google Scholar 

  122. Del Debbio CB, Balasubramanian S, Parameswaran S, Chaudhuri A, Qiu F, Ahmad I (2010) Notch and Wnt signaling mediated rod photoreceptor regeneration by Müller cells in adult mammalian retina. PLoS One 5(8):e12425

    Article  PubMed  CAS  Google Scholar 

  123. Dublin P, Hanani M (2007) Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav Immun 21(5):592–598

    Article  PubMed  CAS  Google Scholar 

  124. Jasmin L, Vit JP, Bhargava A, Ohara PT (2010) Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol 6(1):63–71

    Article  PubMed  Google Scholar 

  125. Villa G, Fumagalli M, Verderio C, Abbracchio MP, Ceruti S (2010) Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update. Neuron Glia Biol 6(1):31–42

    Article  PubMed  Google Scholar 

  126. Ceruti S, Fumagalli M, Villa G, Verderio C, Abbracchio MP (2008) Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium 43(6):576–590

    Article  PubMed  CAS  Google Scholar 

  127. Kushnir R, Cherkas PS, Hanani M (2011) Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: a calcium imaging study. Neuropharmacology 61(4):739–746

    Article  PubMed  CAS  Google Scholar 

  128. Ceruti S, Villa G, Fumagalli M, Colombo L, Magni G, Zanardelli M, Fabbretti E, Verderio C, van den Maagdenberg AM, Nistri A, Abbracchio MP (2011) Calcitonin gene-related peptide-mediated enhancement of purinergic neuron/glia communication by the algogenic factor bradykinin in mouse trigeminal ganglia from wild-type and R192Q Cav2.1 Knock-in mice: implications for basic mechanisms of migraine pain. J Neurosci 31(10):3638–3649

    Article  PubMed  CAS  Google Scholar 

  129. Sevc J, Daxnerova Z, Hanova V, Koval J (2011) Novel observations on the origin of ependymal cells in the ventricular zone of the rat spinal cord. Acta Histochem 113(2):156–162

    Article  PubMed  CAS  Google Scholar 

  130. Mothe AJ, Tator CH (2005) Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 131(1):177–187

    Article  PubMed  CAS  Google Scholar 

  131. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6(7):e182

    Article  PubMed  CAS  Google Scholar 

  132. Yu Y, Ugawa S, Ueda T, Ishida Y, Inoue K, Kyaw Nyunt A, Umemura A, Mase M, Yamada K, Shimada S (2008) Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res 1194:45–55

    Article  PubMed  CAS  Google Scholar 

  133. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106(30):12489–12493

    Article  PubMed  CAS  Google Scholar 

  134. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561

    Article  PubMed  CAS  Google Scholar 

  135. Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58(1):1–10

    Article  PubMed  Google Scholar 

  136. Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14(16):1581–1593

    Article  PubMed  CAS  Google Scholar 

  137. Ceruti S, Colombo L, Magni G, Viganò F, Boccazzi M, Deli MA, Sperlagh B, Abbracchio MP, Kittel A (2011) Oxygen-glucose deprivation increases the enzymatic activity and the microvescicle-mediated release of ectonucleotidases in the cells composing the blood–brain barrier. Neurochem Int 59(2):259–271

    Article  PubMed  CAS  Google Scholar 

  138. Kittel A, Sperlagh B, Pelletier J, Sevigny J, Kirley TL (2007) Transient changes in the localization and activity of ecto-nucleotidases in rat hippocampus following lipopolysaccharide treatment. Int J Dev Neurosci 25(5):275–282

    Article  PubMed  CAS  Google Scholar 

  139. Gulbransen BD, Sharkey KA (2009) Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136(4):1349–1358

    Article  PubMed  CAS  Google Scholar 

  140. Burnstock G (2008) The journey to establish purinergic signalling in the gut. Neurogastroenterol Motil 20(Suppl 1):8–19

    Article  PubMed  CAS  Google Scholar 

  141. Hanani M, Francke M, Hartig W, Grosche J, Reichenbach A, Pannicke T (2000) Patch-clamp study of neurons and glial cells in isolated myenteric ganglia. Am J Physiol Gastrointest Liver Physiol 278(4):G644–G651

    PubMed  CAS  Google Scholar 

  142. Ruhl A (2005) Glial cells in the gut. Neurogastroenterol Motil 17(6):777–790

    Article  PubMed  CAS  Google Scholar 

  143. Vanderwinden JM, Timmermans JP, Schiffmann SN (2003) Glial cells, but not interstitial cells, express P2X7, an ionotropic purinergic receptor, in rat gastrointestinal musculature. Cell Tissue Res 312(2):149–154

    PubMed  Google Scholar 

  144. Kimball BC, Mulholland MW (1996) Enteric glia exhibit P2U receptors that increase cytosolic calcium by a phospholipase C-dependent mechanism. J Neurochem 66(2):604–612

    Article  PubMed  CAS  Google Scholar 

  145. Sarosi GA, Barnhart DC, Turner DJ, Mulholland MW (1998) Capacitative Ca2+ entry in enteric glia induced by thapsigargin and extracellular ATP. Am J Physiol 275(3 Pt 1):G550–G555

    PubMed  CAS  Google Scholar 

  146. Zhang W, Segura BJ, Lin TR, Hu Y, Mulholland MW (2003) Intercellular calcium waves in cultured enteric glia from neonatal guinea pig. Glia 42(3):252–262

    Article  PubMed  Google Scholar 

  147. Gulbransen BD, Bains JS, Sharkey KA (2010) Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J Neurosci 30(19):6801–6809

    Article  PubMed  CAS  Google Scholar 

  148. Braun N, Sevigny J, Robson SC, Hammer K, Hanani M, Zimmermann H (2004) Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45(2):124–132

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the work summarized in this article has been sponsored by the Italian Ministero della Salute, by the Italian Ministero dell’ Università e della Ricerca (MIUR; PRIN-COFIN program), by the Fondazione Italiana Sclerosi Multipla (FISM) grant 2010/R/2, and by the Italian Comitato Telethon Fondazione onlus grant #GGP10082A to M.P.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria P. Abbracchio.

Additional information

Davide Lecca, Stefania Ceruti, and Marta Fumagalli are equally contributing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecca, D., Ceruti, S., Fumagalli, M. et al. Purinergic trophic signalling in glial cells: functional effects and modulation of cell proliferation, differentiation, and death. Purinergic Signalling 8, 539–557 (2012). https://doi.org/10.1007/s11302-012-9310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9310-y

Keywords

Navigation