Skip to main content
Log in

Role of nitric oxide on purinergic signalling in the cochlea

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

In the inner ear, there is considerable evidence that extracellular adenosine 5′-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca2+ concentration ([Ca2+]i) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca2+]i in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca2+ response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca2+ signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca2+ signalling in SGNs and supporting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503–505

    Article  CAS  PubMed  Google Scholar 

  2. Burnstock G (1999) Current status of purinergic signaling in the nervous system. Prog Brain Res 120:3–10

    Article  CAS  PubMed  Google Scholar 

  3. North RA (2002) Molecular physiology of P2X receptor. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  4. Ashmore JF, Ohmori H (1990) Control of intracellular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J Physiol 428:109–131

    CAS  PubMed  Google Scholar 

  5. Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, Colavita A, Kachar B (1999) ATP-Induced Ca2+ release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca2+ store to the base of the sensory hair bundle. J Neurosci 19:6918–6929

    CAS  PubMed  Google Scholar 

  6. Sugasawa M, Erostegui C, Blanchet C, Dulon D (1996) ATP activates non-selective cation channels and calcium release in inner hair cells of the guinea-pig cochlea. J Physiol 491:707–718

    CAS  PubMed  Google Scholar 

  7. Shen J, Harada N, Yamashita T (2003) Nitric oxide inhibits adenosine 5′-triphophate-induced Ca2+ response in inner hair cells of the guinea pig cochlea. Neurosci Lett 337:135–138

    Article  CAS  PubMed  Google Scholar 

  8. Shen J, Harada N, Nakazawa H, Yamashita T (2005) Involvement of the nitric oxide/cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signalling in cochlear inner hair cells. Eur J Neurosci 21:2912–2922

    Article  PubMed  Google Scholar 

  9. Cho H, Harada N, Yamashita T (1997) Extracellular ATP-induced Ca2+ mobilization of type I spiral ganglion cells from the guinea pig cochlea. Acta Otolaryngol 117:545–552

    Article  CAS  PubMed  Google Scholar 

  10. Yukawa H, Shen J, Harada N, Cho-Tamaoka H, Yamashita T (2005) Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons. Neuroscience 130:485–496

    Article  CAS  PubMed  Google Scholar 

  11. Dulon D, Moataz R, Mollard P (1993) Characterization of Ca2+ signals generated by extracellular nucleotides in supporting cells of the organ of Corti. Cell Calcium 14:245–254

    Article  CAS  PubMed  Google Scholar 

  12. Sugasawa M, Erostegui C, Blanchet C, Dulon D (1996) ATP activates a cation conductance and a Ca2+-dependent chloride conductance in Hensen cells of the guinea-pig cochlea. Am J Physiol 271:C1817–C1827

    CAS  PubMed  Google Scholar 

  13. Lagostena L, Ashmore JF, Kachar B, Mammano F (2001) Purinergic control of intercellular communication between Hensen's cells of the guinea pig cochlea. J Physiol 531:693–706

    Article  CAS  PubMed  Google Scholar 

  14. Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Jarlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR (1999) Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 19:8377–8388

    CAS  PubMed  Google Scholar 

  15. Housley GD, Jagger DJ, Greenwood D, Raybould NP, Salih SG, Jarlebark LE, Vlajkovic SM, Kanjhan R, Nikolic P, Munoz DJ, Thorne PR (2002) Purinergic regulation of sound transduction and auditory neurotransmission. Audiol Neurootol 7(1):55–61

    Article  CAS  PubMed  Google Scholar 

  16. Collmann C, Carlsson MA, Hansson BS, Nighorn A (2004) Odorant-evoked nitric oxide signals in the antennal lobe of Manduca sexta. J Neurosci 24:6070–6077

    Article  CAS  PubMed  Google Scholar 

  17. Wang GY, Liets LC, Chalupa LM (2003) Nitric oxide differentially modulates ON and OFF responses of retinal ganglion cells. J Neurophysiol 90:1304–1313

    Article  CAS  PubMed  Google Scholar 

  18. Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135:1079–1095

    Article  CAS  PubMed  Google Scholar 

  19. Griffith OW, Stuehr DJ (1995) Nitric oxide synthase: properties and catalytic mechanism. Annu Rev Physiol 57:707–736

    Article  CAS  PubMed  Google Scholar 

  20. Franz P, Hauser-Kronberger C, Bock P, Quint C, Baumgartner WD (1996) Localization of nitric oxide synthase I and III in the cochlea. Acta Otolaryngol 116:726–731

    Article  CAS  PubMed  Google Scholar 

  21. Gosepath K, Gath I, Maurer J, Pollock JS, Amedee R, Forstermann U, Mann W (1997) Characterization of nitric oxide synthase isoforms expressed in different structures of the guinea pig cochlea. Brain Res 747:26–33

    Article  CAS  PubMed  Google Scholar 

  22. Heinrich UR, Maurer J, Mann W (2004) Evidence for a possible NOS back-up system in the organ of Corti of the guinea pig. Eur Arch Otorhinolaryngol 261:121–128

    Article  PubMed  Google Scholar 

  23. Takumida M, Anniko M (2001) Detection of nitric oxide in the guinea pig inner ear, using a combination of aldehyde fixative and 4, 5-diaminofluorescein diacetate. Acta Otolaryngol 121:460–464

    Article  CAS  PubMed  Google Scholar 

  24. Shen J, Harada N, Nakazawa H, Kaneko T, Izumikawa M, Yamashita T (2006) Role of nitric oxide on ATP-induced Ca2+ signaling in outer hair cells of the guinea pig cochlea. Brain Res 1081:101–112

    Article  CAS  PubMed  Google Scholar 

  25. Takumida M, Anniko M (2002) Nitric oxide in the inner ear. Curr Opin Neurol 15:11–15

    Article  PubMed  Google Scholar 

  26. Clementi E (1998) Role of nitric oxide and its intracellular signaling pathways in the control of Ca2+ homeostasis. Biochem Pharmacol 55(6):713–718

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Robinson PJ (1997) Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. J Neurochem 68(2):443–456

    Article  CAS  PubMed  Google Scholar 

  28. Clementi E, Meldolesi J (1997) The cross-talk between nitric oxide and Ca2+: a story with a complex past and a promising future. Trends Pharmacol Sci 18(8):266–269

    Article  CAS  PubMed  Google Scholar 

  29. Breer H, Shepherd GM (1993) Implications of the NO/cGMP system for olfaction. Trends Neurosci 1:5–9

    Article  Google Scholar 

  30. Cudeiro J, Rivadulla C (1999) Sight and insight—on the physiological role of nitric oxide in the visual system. Trends Neurosci 22:109–116

    Article  CAS  PubMed  Google Scholar 

  31. Heinrich U, Maurer J, Koesling D, Mann W, Forstermann U (2000) Immuno-electron microscopic localization of the α1 and β1-subunits of soluble guanylyl cyclase in the guinea pig organ of corti. Brain Res 885:6–13

    Article  CAS  PubMed  Google Scholar 

  32. Fessenden JD, Schacht J (1998) The nitric oxide/cyclic GMP pathway: a potential major regulator of cochlear physiology. Hear Res 118(1–2):168–176

    Article  CAS  PubMed  Google Scholar 

  33. Fessenden JD, Altschuler RA, Seasholtz AF, Schacht J (1999) Nitric oxide/cyclic guanosine monophosphate pathway in the peripheral and central auditory system of the rat. J Comp Neurol 404(1):52–63

    Article  CAS  PubMed  Google Scholar 

  34. Michel O, Hess A, Bloch W, Stennert E, Su J, Addicks K (1999) Localization of the NO/cGMP-pathway in the cochlea of guinea pigs. Hear Res 133(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  35. Burnstock G (2001) Purinergic signalling in gut. In: Abbracchio MP, Williams M (eds) Handbook of experimental pharmacology II: purinergic and pyrimidinergic signalling. Cardiovascular, respiratory, immune metabolic and gastrointestinal tract function. Springer-Verlag, Berlin, pp 141–238

    Google Scholar 

  36. Burnstock G (2002) Purinergic signaling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 22:364–373

    Article  PubMed  CAS  Google Scholar 

  37. Boeckxstaens GE, Pelckmans PA, Bult H, De Man JG, Herman AG, Van Maercke YM (1991) Evidence for nitric oxide as mediator of nonadrenergic non-cholinergic relaxations induced by ATP and GABA in the canine gut. Br J Pharmacol 102:434–438

    CAS  PubMed  Google Scholar 

  38. Barajas-Lopez C, Espinosa-Luna R, Christofi FL (2000) Changes in intracellular Ca2+ by activation of P2 receptors in submucosal neurons in shortterm cultures. Eur J Pharmacol 409:243–257

    Article  CAS  PubMed  Google Scholar 

  39. Van Crombruggen K, Lefebvre RA (2004) Nitrergic–purinergic interactions in rat distal colon motility. Neurogastroenterol Motil 16:81–98

    Article  PubMed  Google Scholar 

  40. Campanucci VA, Zhang M, Vollmer C, Nurse CA (2006) Expression of multiple P2X receptors by glossopharyngeal neurons projecting to rat carotid body O2-chemoreceptors: role in nitric oxide-mediated efferent inhibition. J Neurosci 26:9482–9493

    Article  CAS  PubMed  Google Scholar 

  41. Yao ST, Gourine AV, Spyer KM, Barden JA, Lawrence AJ (2003) Localisation of P2X2 receptor subunit immunoreactivity on nitric oxide synthase expressing neurones in the brain stem and hypothalamus of the rat: a fluorescence immunohistochemical study. Neuroscience 121:411–419

    Article  CAS  PubMed  Google Scholar 

  42. Housley GD (1998) Extracellular nucleotide signaling in the inner ear. Mol Neurobiol 16:21–48

    Article  CAS  PubMed  Google Scholar 

  43. Mammano F, Bortolozzi M, Ortolano S, Anselmi F (2007) Ca2+ signaling in the inner ear. Physiology 22:131–144

    Article  CAS  PubMed  Google Scholar 

  44. Blatter LA, Taha Z, Mesaros S, Shacklock PS, Wier WG, Malinski T (1995) Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ Res 76(5):922–924

    CAS  PubMed  Google Scholar 

  45. Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett 427(2):263–266

    Article  CAS  PubMed  Google Scholar 

  46. Mutoh A, Isshiki M, Fujita T (2008) Aldosterone enhances ligand-stimulated nitric oxide production in endothelial cells. Hypertens Res 31(9):1811–1820

    Article  CAS  PubMed  Google Scholar 

  47. Kamimura Y, Fujii T, Kojima H, Nagano T, Kawashima K (2003) Nitric oxide (NO) synthase mRNA expression and NO production via muscarinic acetylcholine receptor-mediated pathways in the CEM, human leukemic T-cell line. Life Sci 72(18–19):2151–2154

    Article  CAS  PubMed  Google Scholar 

  48. Publicover NG, Hammond EM, Sanders KM (1993) Amplification of nitric oxide signaling by interstitial cells isolated from canine colon. Proc Natl Acad Sci USA 90:2087–2091

    Article  CAS  PubMed  Google Scholar 

  49. Schuppe H, Cuttle M, Chad JE, Newland PL (2002) 4, 5-diaminofluoroscein imaging of nitric oxide synthesis in crayfish terminal ganglia. J Neurobiol 53(3):361–369

    Article  CAS  PubMed  Google Scholar 

  50. Nakada S, Ishikawa T, Yamamoto Y, Kaneko Y, Nakayama K (2003) Constitutive nitric oxide synthases in rat pancreatic islets: direct imaging of glucose-induced nitric oxide production in beta-cells. Pflugers Arch 447(3):305–311

    Article  CAS  PubMed  Google Scholar 

  51. Strijdom H, Muller C, Lochner A (2004) Direct intracellular nitric oxide detection in isolated adult cardiomyocytes: flow cytometric analysis using the fluorescent probe, diaminofluorescein. J Mol Cell Cardiol 37(4):897–902

    Article  CAS  PubMed  Google Scholar 

  52. Kimura C, Oike M, Ohnaka K, Nose Y, Ito Y (2004) Constitutive nitric oxide production in bovine aortic and brain microvascular endothelial cells: a comparative study. J Physiol 554:721–730

    Article  CAS  PubMed  Google Scholar 

  53. Pajolla GP, Accorsi-Mendonça D, Rodrigues GJ, Bendhack LM, Machado BH, Lunardi CN (2009) Fluorescent indication that nitric oxide formation in NTS neurons is modulated by glutamate and GABA. Nitric Oxide 20(3):207–216

    Article  CAS  PubMed  Google Scholar 

  54. Dedkova EN, Blatter LA (2002) Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 539:77–91

    Article  CAS  PubMed  Google Scholar 

  55. Li N, Sul JY, Haydon PG (2003) A calcium-induced calcium influx factor, nitric oxide, modulates the refilling of calcium stores in astrocytes. J Neurosci 23:10302–10310

    CAS  PubMed  Google Scholar 

  56. Lin S, Fagan KA, Li KX, Shaul PW, Cooper DM, Rodman DM (2000) Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry. J Biol Chem 275:17979–17985

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y, Shin WS, Kawaguchi H, Inukai M, Kato M, Sakamoto A, Uehara Y, Miyamoto M, Shimamoto N, Korenaga R, Ando J, Toyo-oka T (1996) Contribution of sustained Ca2+ elevation for nitric oxide production in endothelial cells and subsequent modulation of Ca2+ transient in vascular smooth muscle cells in coculture. J Biol Chem 271:5647–5655

    Article  CAS  PubMed  Google Scholar 

  58. Kittner H, Franke H, FischerW SN, Krugel U, Illes P (2003) Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology 28:435–444

    Article  CAS  PubMed  Google Scholar 

  59. Seidel B, Bigl M, Franke H, Kittner H, Kiess W, Illes P, Krugel U (2006) Expression of purinergic receptors in the hypothalamus of the rat is modified by reduced food availability. Brain Res 1089:143–152

    Article  CAS  PubMed  Google Scholar 

  60. Riemann R, Reuss S (1999) Nitric oxide synthase in identified olivocochlear projection neurons in rat and guinea pig. Hear Res 135:181–189

    Article  CAS  PubMed  Google Scholar 

  61. Housley GD, Greenwood D, Ashmore JF (1992) Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc R Soc Lond B Biol Sci 249:265–273

    Article  CAS  Google Scholar 

  62. Mockett BG, Housley GD, Thomre PR (1994) Fluorescence imaging of extracellular purinergic receptor sites and putative ecto-ATPase sites on isolated cochlear hair cells. J Neurosci 14:6992–7007

    CAS  PubMed  Google Scholar 

  63. King M, Housley GD, Raybould NP, Greenwood D, Salih SG (1998) Expression of ATP-gated ion channels by Reissner's membrane epithelial cells. NeuroReport 9:2467–2474

    Article  CAS  PubMed  Google Scholar 

  64. Housley GD, Luol L, Ryan AF (1998) Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization. J Comp Neurol 393:403–414

    Article  CAS  PubMed  Google Scholar 

  65. Furness DN, Karkanevatos A, West B, Hackney CM (2002) An immunogold investigation of the distribution of calmodulin in the apex of cochlear hair cells. Hear Res 173:10–20

    Article  CAS  PubMed  Google Scholar 

  66. Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21:5066–5078

    CAS  PubMed  Google Scholar 

  67. Sagami I, Daff S, Shimizu T (2001) Intra-subunit and inter-subunit electron transfer in neuronal nitric-oxide synthase: effect of calmodulin on heterodimer catalysis. J Biol Chem 276:30036–30042

    Article  CAS  PubMed  Google Scholar 

  68. Kiedrowski L, Costa E, Wroblewski JT (1992) Glutamate receptor agonists stimulate nitric oxide synthase in primary cultures of cerebellar granule cells. J Neurochem 58:335–341

    Article  CAS  PubMed  Google Scholar 

  69. Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274:27467–27473

    Article  CAS  PubMed  Google Scholar 

  70. Bredt DS (2003) Nitric oxide signaling specificity—the heart of the problem. J Cell Sci 116:9–15

    Article  CAS  PubMed  Google Scholar 

  71. Davies C, Tingley D, Kachar B, Wenthold RJ, Petralia RS (2001) Distribution of members of the PSD-95 family of MAGUK proteins at the synaptic region of inner and outer hair cells of the guinea pig cochlea. Synapse 40:258–268

    Article  CAS  PubMed  Google Scholar 

  72. Hess A, Bloch W, Arnhold S, Andressen C, Stennert E, Addicks K, Michel O (1998) Nitric oxide synthase in the vestibulocochlear system of mice. Brain Res 813(1):97–102

    Article  CAS  PubMed  Google Scholar 

  73. Robinson LJ, Busconi L, Michel T (1995) Agonist-modulated palmitoylation of endothelial nitric oxide synthase. J Biol Chem 270:995–998

    Article  CAS  PubMed  Google Scholar 

  74. Daniel EE, Jury J, Wang YF (2001) nNOS in canine lower esophageal sphincter: colocalized with Cav-1 and Ca2+-handling proteins? Am J Physiol 281(4):G1101–G1114

    CAS  Google Scholar 

  75. Tsumamoto Y, Yamashita K, Takumida M, Okada K, Mukai S, Shinya M, Yamashita H (2002) In situ localization of nitric oxide synthase and direct evidence of NO production in rat retinal ganglion cells. Brain Res 933:118–129

    Article  CAS  PubMed  Google Scholar 

  76. Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles support a role in cochlear amplification. Nature 433:880–883

    Article  CAS  PubMed  Google Scholar 

  77. Nobles M, Abbott NJ (1998) Modulation of the effects of extracellular ATP on [Ca2+]i in rat brain microvacular endothelial cells. Eur J Pharmacol 361:119–127

    Article  CAS  PubMed  Google Scholar 

  78. Uzlaner N, Priel Z (1999) Interplay between the NO pathway and elevated [Ca2+]i enhances ciliary activity in rabbit trachea. J Physiol 516:179–190

    Article  CAS  PubMed  Google Scholar 

  79. Housley GD, Thorne PR, Kanjhan R, Raybould NP, Munoz DJB, Luo L, Ryan AF (1997) Regulation of the electrochemical gradient for sound transduction by ATP-gated ion channels on cochlear hair cell stereocilia. Soc Neurosci Abstr 23:731

    Google Scholar 

  80. Munoz DJB, Thorne PR, Housley GD, Billett TE (1995) Adenosine 5′-triphosphate (ATP) concentrations in the endolymph and perilymph of the guinea-pig cochlea. Hear Res 90:119–125

    Article  CAS  PubMed  Google Scholar 

  81. Munoz DJB, Kendrick IS, Rassam M, Throne PR (2001) Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia. Acta Otolarnyngol 121:10–15

    CAS  Google Scholar 

  82. Le Prell CG, Bledsoe SC Jr, Bobbin RP, Puel JL (2001) Neurotransmission in the inner ear: functional and molecular analyses. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the Ear. 2. Singular Publishing, New York, pp 575–611

    Google Scholar 

  83. Puel JL, Ruel J, Gervais d'Aldin C, Pujol R (1998) Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport 9:2109–2114

    Article  CAS  PubMed  Google Scholar 

  84. Dawson TM, Dawson VL (1996) Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system. Annu Rev Med 47:219–227

    Article  CAS  PubMed  Google Scholar 

  85. Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    CAS  PubMed  Google Scholar 

  86. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  CAS  PubMed  Google Scholar 

  87. Carson-Jurica MA, Schrader WT, O'malley BW (1990) Steroid receptor family: structure and functions. Endocr Rev 11:201–220

    Article  CAS  PubMed  Google Scholar 

  88. McEwen B, de Kloet ER, Rostene W (1986) Adrenal steroid receptors and actions in the nervous system. Physiol Rev 66:1121–1188

    CAS  PubMed  Google Scholar 

  89. Schlatter LK, Dokas LA (1989) Receptor specificity of a glucocorticoid- and stress-induced hippocampal protein. J Neurosci 9:1134–1140

    CAS  PubMed  Google Scholar 

  90. Rong W, Wang W, Yuan W, Chen Y (1999) Rapid effects of corticosterone on cardiovascular neurons in the rostral ventrolateral medulla of rats. Brain Res 815:51–59

    Article  CAS  PubMed  Google Scholar 

  91. De Kloet ER (2008) Corticoid steroid hormones in the central stress response: quick-and-slow. Front Neuroendocrinol 29(2):268–272

    Article  PubMed  CAS  Google Scholar 

  92. Makara GB, Haller J (2001) Non-genomic effects of glucocorticoids in the neural system. Evidence, mechanisms and implications. Prog Neurobiol 65:367–390

    Article  CAS  PubMed  Google Scholar 

  93. ffrench-Mullen JM (1995) Cortisol inhibition of calcium currents in guinea pig hippocampal CA1 neurons via G-protein-coupled activation of protein kinase C. J Neurosci 15(1 Pt 2):903–911

    CAS  PubMed  Google Scholar 

  94. Wagner PG, Jorgensen MS, Arden WA, Jackson BA (1999) Stimulus-secretion coupling in porcine adrenal chromaffin cells: acute effects of glucocorticoids. J Neurosci Res 57:643–650

    Article  CAS  PubMed  Google Scholar 

  95. He LE, Zhang CG, Zhou Z, Xu T (2003) Rapid inhibitory effects of corticosterone on calcium influx in rat dorsal root ganglion neurons. Neuroscience 116:325–333

    Article  CAS  PubMed  Google Scholar 

  96. Harvey BJ, Higgins M (2000) Nongenomic effects of aldosterone on Ca2+ in M-1 cortical collecting duct cells. Kidney Int 57:1395–1403

    Article  CAS  PubMed  Google Scholar 

  97. Steiner A, Vogt E, Locher R, Vetter W (1988) Stimulation of the phosphoinositide signaling system as a possible mechanism for glucocorticoid action in blood pressure control. J Hypertens 6(4):S366–S368

    CAS  Google Scholar 

  98. Doolan CM, Harvey BJ (1996) Rapid effects of steroid hormones on free intracellular calcium in T84 colonic epithelial cells. Am J Physiol 271:C1935–C1941

    CAS  PubMed  Google Scholar 

  99. Zhou JZ, Zheng JQ, Zhang YX, Zhou JH (2000) Corticosterone impairs cultured hippocampal neurons and facilitates Ca2+ influx through voltage-dependent Ca2+ channel. Acta Pharmacol Sin 21:156–160

    CAS  PubMed  Google Scholar 

  100. Takahashi T, Kimoto T, Tanabe N, Hattori T, Yasumatsu KS (2002) Corticosterone acutely prolonged N-methyl-d-aspartate receptor-mediated Ca2+ elevation in cultured rat hippocampal neurons. J Neurochem 83:1441–1451

    Article  CAS  PubMed  Google Scholar 

  101. ten Cate WJF, Curtis LM, Small GN, Rarey KE (1993) Localization of glucocorticoid receptors and glucocorticoid receptor mRNAs in the rat cochlea. Laryngoscope 103:865–871

    PubMed  Google Scholar 

  102. Rarey KE, Curtis LM (1996) Receptors for glucocorticoids in the human inner ear. Otolaryngol Head Neck Surg 115:38–41

    Article  CAS  PubMed  Google Scholar 

  103. Hara A (1998) Biochemical studies on homeostatic mechanism in the inner ear fluid and glucocorticoid receptor in the cochlea of guinea pig. Otol Jpn 8:40–46

    CAS  Google Scholar 

  104. Rarey KE, Gerhardt KJ, Curtis LM, ten Cate WJF (1995) Effect of stress on cochlear glucocorticoid protein: acoustic stress. Hear Res 82:135–138

    Article  CAS  PubMed  Google Scholar 

  105. Terunuma T, Hara A, Senarita M, Motohashi H, Kusakari J (2001) Effect of acoustic overstimulation on regulation of glucocorticoid receptor mRNA in the cochlea of the guinea pig. Hear Res 151:121–124

    Article  CAS  PubMed  Google Scholar 

  106. Törkvist L, Lundeberg T, Thorlacius H, Larsson J, Löfberg R, Löfberg RJ (1997) Effects of environmental stress on tissue survival and neutrophil recruitment in surgical skin flaps in relation to plasma corticosterone levels in the rat. Inflamm Res 46:199–202

    Article  PubMed  Google Scholar 

  107. Reul JMHM, van den Bosch FR, de Kloet ER (1987) Relative occupation of type-І and type-IIcorticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol 115:459–467

    Article  CAS  PubMed  Google Scholar 

  108. Serova L, Nankova B, Rivkin M, Kvetnansky R, Sabban EL (1997) Glucocorticoids elevate GTP cyclohydrolase I mRNA levels in vivo and in PC12 cells. Brain Res Mol Brain Res 48:251–258

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Liberman MC (2002) Restraint stress and protection from acoustic injury in mice. Hear Res 165:96–102

    Article  PubMed  Google Scholar 

  110. Wenting-Van Wijk MJG, Blankenstein MA, Lafeber FPJG, Bijlsma JWJ (1999) Relation of plasma dexamethasone to clinical response. Clin Exp Rheumatol 17:305–312

    CAS  PubMed  Google Scholar 

  111. Schweinfurth JM, Very PM (1996) Current concepts in the diagnosis and treatment of sudden sensorineural hearing loss. Eur Arch Otorhinolaryngol 253:117–121

    Article  CAS  PubMed  Google Scholar 

  112. Chandrasekhar SS (2001) Intratympanic dexamethasone for sudden sensorineural hearing loss: clinical and laboratory evaluation. Otol Neurotol 22:18–23

    Article  CAS  PubMed  Google Scholar 

  113. Buttgereit F, Brand MD, Burmester GR (1999) Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochem Pharm 58:363–368

    Article  CAS  PubMed  Google Scholar 

  114. Urbach V, Walsh DE, Mainprice B, Bousquet J, Harvey BJ (2002) Rapid non-genomic inhibition of ATP-induced Cl- secretion by dexamethasone in human bronchial epithelium. J Physiol 545:869–878

    Article  CAS  PubMed  Google Scholar 

  115. Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, Rebsamen MC, Hsieh CM, Chui DS, Thomas KL, Prorock AJ, Laubach VE, Moskowitz MA, French BA, Ley K, Liao JK (2002) Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 8:473–479

    Article  CAS  PubMed  Google Scholar 

  116. Matsunobu T, Schacht J (2000) Nitric oxide/cyclic GMP pathway attenuates ATP-evoked intracellular calcium increase in supporting cells of the guinea pig cochlea. J Comp Neurol 423:452–461

    Article  CAS  PubMed  Google Scholar 

  117. Kikichi T, Kimura RS, Paukl DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 191:101–118

    Google Scholar 

  118. Lautermann J, Ten Cate WJ, Altenhoff P, Grummer R, Traub O, Frank H, Jahnke K, Winterhager E (1998) Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294:415–420

    Article  CAS  PubMed  Google Scholar 

  119. Mammano F, Goodfellow SJ, Fountain E (1996) Electrophysiological properties of Hensen's cells investigated in situ. NeuroReport 7:537–542

    Article  CAS  PubMed  Google Scholar 

  120. Wangemann P, Schacht J (1996) Homeostatic mechanisms in the cochlea. In: Dallos P, Popper A, Fay R (eds) The cochlea. Springer-Verlag, New York, pp 130–185

    Google Scholar 

  121. Hibino H, Kurachi Y (2006) Molecular and physiological bases of the K+-circulation in the mammalian inner ear. Physiology (Bethesda) 21:336–345

    CAS  Google Scholar 

  122. Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576:11–21

    Article  CAS  PubMed  Google Scholar 

  123. Zhao HB, Kikuchi T, Ngezahayo A, White TW (2006) Gap junctions and cochlear homeostasis. J Membr Biol 209:177–186

    Article  CAS  PubMed  Google Scholar 

  124. Sanderson MJ, Charles AC, Dirksen ER (1990) Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul 1(8):585–596

    CAS  PubMed  Google Scholar 

  125. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21(7):2215–2223

    CAS  PubMed  Google Scholar 

  126. Cotrina ML, Lin JH, López-García JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20(8):2835–2844

    CAS  PubMed  Google Scholar 

  127. Sigurdson WJ, Sachs F, Diamond SL (1993) Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am J Physiol 264:H1745–H1752

    CAS  PubMed  Google Scholar 

  128. Jorgensen NR, Geist ST, Civitelli R, Steinberg TH (1997) ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biol 139(2):497–506

    Article  CAS  PubMed  Google Scholar 

  129. Hassinger TD, Guthrie PB, Atkinson PB, Bennett MV, Kater SB (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci USA 93(23):13268–13273

    Article  CAS  PubMed  Google Scholar 

  130. Osipchuk Y, Cahalan M (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359(6392):241–244

    Article  CAS  PubMed  Google Scholar 

  131. Piazza V, Ciubotaru CD, Gale JE, Mammano F (2007) Purinergic signalling and intercellular Ca2+ wave propagation in the organ of Corti. Cell Calcium 41(1):77–86

    Article  CAS  PubMed  Google Scholar 

  132. Fam SR, Gallagher CJ, Salter MW (2000) P2Y1 purinoceptor-mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cordastrocytes. J Neurosci 20:2800–2808

    CAS  PubMed  Google Scholar 

  133. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95:15735–15740

    Article  CAS  PubMed  Google Scholar 

  134. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    CAS  PubMed  Google Scholar 

  135. Fam SR, Gallagher CJ, Salter MW (2003) Differential frequency dependence of P2Y1- and P2Y2-mediated Ca2+ signaling in astrocytes. J Neurosci 23:4437–4444

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narinobu Harada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, N. Role of nitric oxide on purinergic signalling in the cochlea. Purinergic Signalling 6, 211–220 (2010). https://doi.org/10.1007/s11302-010-9186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-010-9186-7

Keywords

Navigation