Skip to main content
Log in

Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Characterization of apple germplasm is important for conservation management and breeding strategies. A set of 448 Malus domestica accessions, primarily of local Danish origin, were genotyped using 15 microsatellite markers. Ploidy levels were determined by flow cytometry. Special emphasis was given to pedigree reconstruction, cultivar fingerprinting and genetic clustering. A reference set of cultivars, mostly from other European countries, together with a private nursery collection and a small set of Malus sieversii, Malus sylvestris and small-fruited, ornamental Malus cultivars, was also included. The microsatellite markers amplified 17–30 alleles per loci with an average degree of heterozygosity at 0.78. We identified 104 (23%) duplicate genotypes including colour sports. We could infer first-degree relationships for many cultivars with previously unknown parentages. STRUCTURE analysis provided no evidence for a genetic structure but allowed us to present a putative genetic assembly that was consistent with both PCA analysis and parental affiliation. The Danish cultivar collection contains 10% duplicate genotypes including colour sports and 22% triploids. Many unique accessions and considerable genetic diversity make the collection a valuable resource within the European apple germplasm. The findings presented shed new light on the origin of Danish apple cultivars. The fingerprints can be used for cultivar identification and future management of apple genetic resources. In addition, future genome-wide association studies and breeding programmes may benefit from the findings concerning genetic clustering and diversity of cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Atiyat RM (2015) The power of 28 microsatellite markers for parentage testing in sheep. Electron J Biotechnol 18:116–121. doi:10.1016/j.ejbt.2015.01.001

    Article  CAS  Google Scholar 

  • Bergström I (1938) Tetraploid apple seedlings obtained from the progeny of triploid varieties. Hereditas 24:210–215

    Article  Google Scholar 

  • Bianco L et al (2014) Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh). PLoS One 9:e110377. doi:10.1371/journal.pone.0110377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianco L et al (2016) Development and validation of the Axiom®Apple480K SNP genotyping array. Plant J 86:62–74. doi:10.1111/tpj.13145

    Article  CAS  PubMed  Google Scholar 

  • Bredsted HC (1893) Haandbog i dansk Pomologi, 2. æbler. vol Book, Whole. Hempelske Bog- og Papirhandels Forlag, Odense

  • Chagné D et al (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7:e31745. doi:10.1371/journal.pone.0031745

    Article  PubMed  PubMed Central  Google Scholar 

  • Chagné D et al (2015) Polyploid and aneuploid detection in apple using a single nucleotide polymorphism array. Tree Genet Genomes 11:1–6

    Article  Google Scholar 

  • Clark LV, Jasieniuk M (2011) Polysat: an R package for polyploid microsatellite analysis. Mol Ecol Resour 11:562–566. doi:10.1111/j.1755-0998.2011.02985.x

    Article  PubMed  Google Scholar 

  • Coart E, Van Glabeke S, De Loose M, Larsen AS, RoldÁN-Ruiz I (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh). Mol Ecol 15:2171–2182. doi:10.1111/j.1365-294X.2006.02924.x

    Article  CAS  PubMed  Google Scholar 

  • Cornille A et al (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e1002703. doi:10.1371/journal.pgen.1002703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornille A, Gladieux P, Giraud T (2013) Crop-to-wild gene flow and spatial genetic structure in the closest wild relatives of the cultivated apple. Evol Appl 6:737–748. doi:10.1111/eva.12059

    Article  Google Scholar 

  • Crane MB, Lawrence WJC (1930) Fertility and vigour of apples in relation to chromosome number. J Genet 22:153–163. doi:10.1007/BF02983844

    Article  Google Scholar 

  • Cuenca J, Aleza P, Juárez J, García-Lor A, Froelicher Y, Navarro L, Ollitrault P (2015). Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus. Sci Rep 5:9897. doi:10.1038/srep09897

  • Druart P (2000) Aneuploids and variants of apple (Malus domestica Borkh.) through in vitro culture techniques. In: XXV International Horticultural Congress, Part 10: Application of Biotechnology and Molecular Biology and Breeding-In Vitro 520, pp 301–310

  • Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4(2):359-361. doi: 10.1007/s12686-011-9548-7

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Evans KM, Fernándes F, Laurens F, Feugey L, Van de Weg E (2007) Harmonizing fingerprinting protocols to allow comparisons between germplasm collections. Eucarpia. XII Fruit Selection Symposium. Zaragoza, Spain, pp57–58

  • Evans KM et al (2011) Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Mol Breed 28:535–547

    Article  Google Scholar 

  • Fernández-Fernández F (2010) Fingerprinting the National Apple and Pear Collections Final report of DEFRA research project GC0140 http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=15150&FromSearch=Y&Publisher=1&SearchText=0140&SortString=ProjectCode&SortOrder=Asc&Paging=10#Descripti 1–18

  • Florin R (1926) Pollen production and incompatibilities in apples and pears Mem Hort Soc New York 3

  • Gardner KM et al (2014) Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3: Genes|Genomes|Genetics 4:1681–1687

    Article  PubMed  PubMed Central  Google Scholar 

  • Garkava-Gustavson L, Nybom H (2003) DNA-analyser afslöjar våra äpplesorter Fakta Trädgård Fritid 94

  • Garkava-Gustavsson L, Kolodinska Brantestam A, Sehic J, Nybom H (2008) Molecular characterisation of indigenous Swedish apple cultivars based on SSR and S-allele analysis. Hereditas 145:99–112

    Article  CAS  PubMed  Google Scholar 

  • Garkava-Gustavsson L, Mujaju C, Sehic J, Zborowska A, Backes GM, Hietaranta T, Antonius K (2013) Genetic diversity in Swedish and Finnish heirloom apple cultivars revealed with SSR markers. Sci Hortic 162:43–48. doi:10.1016/j.scienta.2013.07.040

    Article  CAS  Google Scholar 

  • Gasi F, Simon S, Pojskic N, Kurtovic M, Pejic I (2010) Genetic assessment of apple germplasm in Bosnia and Herzegovina using microsatellite and morphologic markers. Sci Hortic 126:164–171

    Article  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076. doi:10.1007/s001220050841

    Article  CAS  Google Scholar 

  • Gross BL, Volk GM, Richards CM, Forsline PL, Fazio G, Chao CT (2012) Identification of “duplicate” accessions within the USDA-ARS National Plant Germplasm System Malus Collection. J Am Soc Hortic Sci 137:333–342

    Google Scholar 

  • Guarino C, Santoro S, De Simone L, Lain O, Cipriani G, Testolin R (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus × domestica Borkh.) as revealed by SSR-based fingerprinting. Journal of horticultural science & biotechnology 81:39–44

    Article  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. The New phytologist 189:909–922. doi:10.1111/j.1469-8137.2010.03593.x

    Article  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi:10.1111/j.1755-0998.2009.02787.x

    Article  PubMed  Google Scholar 

  • Juniper BE, Mabberley DJ (2006) The story of the apple, vol 20. Timber Press Portland, Oregon

    Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) Ml-relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579. doi:10.1111/j.1471-8286.2006.01256.x

    Article  CAS  Google Scholar 

  • Kobel F (1927) Zytologische Untersuchungen an Prunoideen und Pomoideen Archiv der julius klaus-stiftung für vererbungsforschung sozialanthropologie und rassenhygiene 3:69–77

  • Kvaale E (1926) Abortive and sterile apple pollen Mem Hort Soc New York 3

  • Larsen A, Asmussen C, Coart E, Olrik D, Kjær E (2006) Hybridization and genetic variation in Danish populations of European crab apple (Malus sylvestris). Tree Genet Genomes 2:86–97. doi:10.1007/s11295-005-0030-0

    Article  Google Scholar 

  • Larsen B, Ørgaard M, Toldam-Andersen TB, Pedersen C (2016a) A high-throughput method for genotyping S-RNase alleles in apple. Mol Breed 36:1–10. doi:10.1007/s11032-016-0448-0

    Article  CAS  Google Scholar 

  • Larsen B, Pedersen C, Ørgaard M, Toldam-Andersen TB (2016b) Danish apple cultivars: genetic diversity, parentage and breeding potential Acta Horticulturae

  • Lassois L et al (2016) Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers. Plant Mol Biol Report 34:827–844. doi:10.1007/s11105-015-0966-7

    Article  CAS  Google Scholar 

  • Liang W, Dondini L, De Franceschi P, Paris R, Sansavini S, Tartarini S (2015) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Report 33:458–473. doi:10.1007/s11105-014-0754-9

    Article  CAS  Google Scholar 

  • Matthiessen C (1913) Dansk Frugt. Hagerup, Copenhagen

  • Patzak J, Paprštein F, Henychová A, Sedlák J, Somers D (2012) Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus × domestica) genetic resources. Genome 55:647–665

    Article  CAS  PubMed  Google Scholar 

  • Pedersen A (1925) Danmarks Frugtavl, Beretning fra Fællesudvalget for lokale Iagttagelsesplantninger og Frugtsortundersøgelser. Copenhagen

  • Pedersen A (1950) Danmarks Frugtsorter, 1. del. æbler vol 2. vol Book, Whole. Alm. Dansk Gartnerforening, Copenhagen,

  • Potts SM, Han Y, Khan MA, Kushad MM, Rayburn AL, Korban SS (2012) Genetic diversity and characterization of a core collection of Malus germplasm using simple sequence repeats (SSRs). Plant Mol Biol Report 30:827–837

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riester M, Stadler PF, Klemm K (2009) FRANz: reconstruction of wild multi-generation pedigrees. Bioinformatics 25:2134–2139. doi:10.1093/bioinformatics/btp064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodzen JA, Famula TR, May B (2004) Estimation of parentage and relatedness in the polyploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated microsatellite loci. Aquaculture 232:165–182. doi:10.1016/S0044-8486(03)00450-2

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotech 18:233–234

    Article  CAS  Google Scholar 

  • Urrestarazu J, Miranda C, Santesteban LG, Royo JB (2012) Genetic diversity and structure of local apple cultivars from northeastern Spain assessed by microsatellite markers. Tree Genet Genomes 8:1163–1180

    Article  Google Scholar 

  • Urrestarazu J et al (2016) Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol 16(130). doi:10.1186/s12870-016-0818-0

  • van Treuren R, Kemp H, Ernsting G, Jongejans B, Houtman H, Visser L (2010) Microsatellite genotyping of apple (Malus domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet Resour Crop Evol 57:853–865

    Article  Google Scholar 

  • Varming C, Amigo JM, Petersen MA, Toldam-Andersen T (2013) Aroma analysis and data handling in the evaluation of niche apple juices from 160 local Danish apple cultivars. In: Flavour Science: Proceedings from XIII Weurman Flavour Research Symposium, Academic Press, p 277

  • Velasco R et al (2010) The genome of the domesticated apple (Malus [times] domestica Borkh). Nat Genet 42:833–839 http://www.nature.com/ng/journal/v42/n10/abs/ng.654.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123:321–326. doi:10.1111/j.1439-0523.2004.00973.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A generous grant from Foreningen PlanDanmark and a PhD scholarship from the Department of Plant and Environmental Sciences, University of Copenhagen made this work possible. We are thankful to Jacob Weiner for valuable comments on the manuscript, to Charles-Eric Durel for a fruitful discussion and to Stefan Morberg for skillful technical assistance on flow cytometry. We thank Prima Plant (Sabro, Denmark), Tuse Næs Gårdmosteri (Holbæk, Denmark), Karen Syberg and Louise De Bang for providing plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjarne Larsen.

Ethics declarations

Data archiving statement

A full list of accession names, numbers and origin are given in Online Resource 1.

Additional information

Communicated by M. Troggio

Electronic supplementary material

Online Resource 1

List of accessions and accession numbers. Accessions originate from the gene bank collection, “Pometet” (Taastrup, Copenhagen Region), University of Copenhagen, unless otherwise specified. (PDF 75 kb)

Online Resource 2

STRUCTURE analysis for 344 M. domestica cultivars. The graph shows delta K vs. K for K = 2–12, tested over 20 runs. (PDF 10 kb)

Online Resource 3

List of ploidy level for Malus domestica cultivars and M. sieversii, determined by flow cytometry. (PDF 60 kb)

Online Resource 4

Each horizontal row contains accessions with identical genotype profile of 15 SSR-loci. The duplicate genotypes are divided into four categories: previously (beige) and not previously reported synonyms (blue), subclones such as colour sports from an original genotype (red) and accessions from the private nursery collection Assens (green). (PDF 36 kb)

Online Resource 5

Network of first degree relationships. Arrows point from parent to offspring. Information given in each box: cultivar name, accession number, ploidy level, S-RNase alleles and approximate geographical origin and year of origin. (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, B., Toldam-Andersen, T.B., Pedersen, C. et al. Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection. Tree Genetics & Genomes 13, 14 (2017). https://doi.org/10.1007/s11295-016-1087-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1087-7

Keywords

Navigation