Skip to main content

Advertisement

Log in

Phylogenetic relationships, molecular taxonomy, biogeography of Betula, with emphasis on phylogenetic position of Iranian populations

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

A Correction to this article was published on 25 January 2018

This article has been updated

Abstract

Birch trees inhabiting the high-altitude Hyrcanian forest (the southern shores of the Caspian Sea of Iran and Azerbaijan) are classified in the EN (endangered) category of the International Union for Conservation of Nature (IUCN). Taxonomic status and phylogenetic relationship of Iranian populations, molecular taxonomy, and biogeography of the genus Betula in the world have been considered. Four remnant populations of Betula were selected from north and northwestern parts of Iran. The internal ITS and trnH-psbA intergenic spacer regions were sequenced. Based on the trnH-psbA and ITS, Iranian birch and white birch were placed in a clade, but based on trnH-psbA divided into two subclades. Phylogenetic trees based on ITS and trnH-psbA data did not completely support the morphological classification. Network analysis confirms a close relationship of B. pendula with B. platyphylla and B. papyrifera with B. humilis, and B. ermanii were in a group with the other tetraploid species of the subgenus Neurobetula. Divergence time analysis showed that about 75 Ma ago the Betula genus separated from the other genus of Betulaceae and then divided into two main clades in Oligocene. Our divergence analysis supports that two subgenera of Betulenta and Betulaster are the oldest subgenera in the genus Betula and they date back to Eocene. The ancestral reconstruction suggests that ancestors of the genus Betula originated from Southeast Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 25 January 2018

    Unfortunately, the original publication of this paper contains a mistake.

References

  • Ali SS, Yu Y, Pfosser M, Wetschnig W (2012) Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Ann Bot London 109:95–107

    Article  Google Scholar 

  • Ashburner K (1980) Betula—a survey. Plantsman 2:31–53

    Google Scholar 

  • Ashburner K, McAllister HA (2013) The genus Betula: a taxonomic revision of birches. Kew publishing, London

    Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Browicz K (1971) Distribution of woody Rosaceae in W. Asia: 7. Genus Amelanchier Med.(Rodzaj Amelanchier Med.). Arbor Kornickie 16:5–26

    Google Scholar 

  • Browicz K (1982) Chorology of trees and shrubs in South-West Asia and adjacent regions. Vol. 1. Chorology of trees and shrubs in South-West Asia and adjacent regions Vol 1

  • Budantsev LY (1982) Alnus Mill, species identified from leaves. Magnoliophyta Fossilia USRR 2, Ulmaceae-Betulaceae: 120–128

  • Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613

    Article  PubMed  PubMed Central  Google Scholar 

  • China Plant B Group (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. PNAS 108:19641–19646

    Article  Google Scholar 

  • Crane PR, Stockey RA (1987) Betula leaves and reproductive structures from the Middle Eocene of British Columbia, Canada. Can J Bot 65(12):2490–2500

    Article  Google Scholar 

  • de Jong P (1993) An introduction to Betula: its morphology, evolution, classification and distribution, with a survey of recent work. In: Hunt D (ed) Proceedings of the IDS Betula symposium, 2–4 October 1992. International Dendrology Society, Richmond

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Dugle JR (1966) A taxonomic study of western Canadian species in the genus Betula. Can J Bot 44:929–1007

    Article  Google Scholar 

  • Forest F, Savolainen V, Chase MW, Lupia R, Bruneau A, Crane PR (2005) Teasing apart molecular-versus fossil-based error estimates when dating phylogenetic trees: a case study in the birch family (Betulaceae). Syst Bot 30(1):118–133

    Article  Google Scholar 

  • Furlow JJ (1990) The genera of Betulaceae in the southeastern United States. J Arnold Arboretum 71:1–67

    Article  Google Scholar 

  • Grimm GW, Renner SS (2013) Harvesting Betulaceae sequences from GenBank to generate a new chronogram for the family. Bot J Linn Soc 172(4):465–477

    Article  Google Scholar 

  • Hartig T (1849) Monographie der Betulaceen: A. Foerstner

  • Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc of the Royal Soc London Series B: Biolo Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6:e19254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howland D, Oliver R, Davy A (1995) Morphological and molecular variation in natural populations of Betula. New Phytol 130:117–124

    Article  CAS  Google Scholar 

  • Hutchinson J (1964) genera of flowering plants (Angiospermae)

  • Järvinen P, Palmé A, Morales LO, Lännenpää M, Keinänen M, Sopanen T, Lascoux M (2004) Phylogenetic relationships of Betula species (Betulaceae) based on nuclear ADH and chloroplast matK sequences. Am J Bot 91:1834–1845

    Article  PubMed  Google Scholar 

  • Jobes DV, Thien LB (1997) A conserved motif in the 5.8 S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequences. Plant Mol Biol Rep 15:326–334

    Article  CAS  Google Scholar 

  • Johnsson H (1949) Studies on birch species hybrids. Hereditas 35:115–135

    Article  Google Scholar 

  • Julkunen-Tiitto R, Rousi M, Bryant J, Sorsa S, Keinänen M, Sikanen H (1996) Chemical diversity of several Betulaceae species: comparison of phenolics and terpenoids in northern birch stems. Trees 11:16–22

    Article  Google Scholar 

  • Kallio P, Niemi S, Sulkinoja M (1983) The Fennoscandian birch and its evolution in the marginal forest zone. Nordicana 47:101–110

    Google Scholar 

  • Kato H, Oginuma K, Gu Z, Hammel B, Tobe H (1998) Phylogenetic relationships of Betulaceae based on matK sequences with particular reference to the position of Ostryopsis. Acta Phytotax Geobot 49:89–97

    Google Scholar 

  • Keinänen M, Julkunen-Tiitto R, Rousi M, Tahvanainen J (1999) Taxonomic implications of phenolic variation in leaves of birch ( Betula. L.) species. Biochem Syst Ecol 27:243–254

    Article  Google Scholar 

  • Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Shoup S, Chen Z (2005) Phylogenetics of Betula (Betulaceae) inferred from sequences of nuclear ribosomal DNA. Rhodora 107:69–86

    Article  Google Scholar 

  • Li RQ, Chen ZD, Lu AM, Soltis DE, Soltis PS, Manos PS (2004) Phylogenetic relationships in Fagales based on DNA sequences from three genomes. Int J Plant Sci 165:311–324

    Article  CAS  Google Scholar 

  • Liu JS, Schardl CL (1994) A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Mol Biol 26:775–778

    Article  CAS  PubMed  Google Scholar 

  • Mabberley DJ (1997) The plant-book: a portable dictionary of the vascular plants utilizing Kubitzki’s the families and genera of vascular plants (1990-), Cronquist’s an integrated system of classification of flowering plants (1981), and current botanical literature, arranged largely on the principles of editions 1–6 (1896/97–1931) of Willis’s a dictionary of the flowering plants and ferns. Cambridge university press

  • Maddison W, Maddison D (2015) Mesquite: a modular system for evolutionary analysis. Version 2.75. 2011. URL http://mesquiteproject.org

  • Masters BC, Fan V, Ross HA (2011) Species delimitation—a geneious plugin for the exploration of species boundaries. Mol Ecol Resour 11:154–157

    Article  PubMed  Google Scholar 

  • Nagamitsu T, Kawahara T, Kanazashi A (2006) Endemic dwarf birch Betula apoiensis (Betulaceae) is a hybrid that originated from Betula ermanii and Betula ovalifolia. Plant species biology 21:19–29

    Article  Google Scholar 

  • Nakai T (1915) Flora Sylvatica Koreana, vol 2. The Government of Chosen, Seoul

    Google Scholar 

  • Palme A, Su Q, Palsson S, Lascoux M (2004) Extensive sharing of chloroplast haplotypes among European birches indicates hybridization among Betula pendula, B. pubescens and B. nana. Mol Ecol 13:167–178

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Song J, Zhu Y, Xie C, Chen S (2010) Using DNA barcoding to identify species within Euphorbiaceae. Planta Med 76:1784–1786

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Song J, Zhu Y, Xu H, Huang L, Chen S (2011) Applying plant DNA barcodes for Rosaceae species identification. Cladistics 27:165–170

    Article  Google Scholar 

  • Pigg KB, Manchester SR, Wehr WC (2003) Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby formations of northwestern North America. Int J Plant Sci 164:807–822

    Article  Google Scholar 

  • Prévot V, Jordaens K, Sonet G, Backeljau T (2013) Exploring species level taxonomy and species delimitation methods in the facultatively self-fertilizing land snail genus Rumina (Gastropoda: Pulmonata). PLoS One 8:e60736

    Article  PubMed  PubMed Central  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Bio Rep 15(1):8–15

    Article  CAS  Google Scholar 

  • Radetzky R (1990) Analysis of mitochondrial DNA and its inheritance in Populus. Curr Genet 18:429–434

    Article  CAS  Google Scholar 

  • Rambaut A (2009) FigTree, ver. 1.3.1. [Online]. Available: http://tree.bio.ed.ac.uk/software/figtree.

  • Regel E (1865) Bemerkungen über die Gattungen Betula und Alnus nebst Beschreibung einiger neuer Arten. Bulletin of Society of Naturalists (Moscou) 38:388–434

  • Regel E, von Trautvetter ER, Regel E, Regel E, von Trautvetter ER, von Trautvetter ER (1865) Bemerkungen über die Gattungen Betula und Alnus nebst Beschreibung einiger neuer Arten: Soc. Nat

  • Riddle BR, Dawson MN, Hadly EA, Hafner DJ, Hickerson MJ, Mantooth SJ, Yoder AD (2008) The role of molecular genetics in sculpting the future of integrative biogeography. Prog Phys Geogr 32:173–202

    Article  Google Scholar 

  • Rodrigo A, Bertels F, Heled J, Noder R, Shearman H, Tsai P (2008) The perils of plenty: what are we going to do with all these genes? Phil Trans R Soc B: Biol Sci 363:3893–3902

    Article  Google Scholar 

  • Sanderson MJ, Doyle JA (2001) Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Am J Bot 88(8):1499–1516

    Article  CAS  PubMed  Google Scholar 

  • Sang T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1120

    Article  CAS  PubMed  Google Scholar 

  • Savard L, Michaud M, Bousquet J (1993) Genetic diversity and phylogenetic relationships between birches and alders using ITS, 18S rRNA, and rbcL gene sequences. Mol Phylogenet Evol 2:112–118

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Maisel S, Gerlach D, Müller T, Wolf M (2005) A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11:361–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, DePinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivathsan A, Meier R (2012) On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28:190–194

    Article  Google Scholar 

  • Skvortsov A (2002) A new system of the genus Betula L.—the birch. Bull Mosc Soc Natur 107:73–76

    Google Scholar 

  • Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG (2002) Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. P Natl Acad Sci Usa 99(7):4430–4435

    Article  CAS  Google Scholar 

  • Springer MS (1995) Molecular clocks and the incompleteness of the fossil record. J M Evol 41(5):531–538

    CAS  Google Scholar 

  • Swofford DL, Olsen GJ, Waddel PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DH, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland, pp. 407–514

    Google Scholar 

  • Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737

    Google Scholar 

  • Thórsson ÆT, Salmela E, Anamthawat-Jónsson K (2001) Morphological, cytogenetic, and molecular evidence for introgressive hybridization in birch. Hered 92:404–408

    Article  Google Scholar 

  • Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int J Plant Sci 162:S3–S17

    Article  Google Scholar 

  • Vaarama A, Valanne T (1973) On the taxonomy, biology and origin of Betula tortuosa Ledeb. Reports of the Kevo Subarctic Research Station 10:70–84

    Google Scholar 

  • Vakkari P (2009) EUFORGEN technical guidelines for genetic conservation and use for Silver birch (Betula pendula). Bioversity International, Rome, Italy 6

  • Walters SM (1964) Betulaceae. In: Tutin TG, Heywood VH, Burges NA, et al. (eds) Flora Europaea, vol 1. Cambridge University Press, Cambridge, pp. 57–59

    Google Scholar 

  • Wang N, McAllister HA, Bartlett PR, Buggs RJA (2016) Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae). Ann Bot London. In press; doi:10.1093/aob/mcw048, available online at www.aob.oxfordjournals.org)

  • Wehr WC (1995) Early tertiary flowers, fruits, and seeds of Washington State and adjacent areas. Wash Geol 23:3–16

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a guide to methods and applications 18:315–322

    Google Scholar 

  • Williams J Jr, Arnold M (2001) Sources of genetic structure in the woody perennial Betula occidentalis. Int J Plant Sci 162:1097–1109

    Article  CAS  Google Scholar 

  • Winkler H (1904) Betulaceae. In: Engler A (ed) Das Pflanzenreich Heft, 19 (IV.61), 1–49. W. Engelmann, Leipzig

  • Wollenweber E (1975) Flavonoidmuster im knospenexkret der betulaceen. Biochem Syst Ecol 3:47–52

    Article  CAS  Google Scholar 

  • Yousefzadeh H, Colagar AH, Tabari M, Sattarian A, Assadi M (2012) Utility of ITS region sequence and structure for molecular identification of Tilia species from Hyrcanian forests, Iran. Plant Syst Evol 298:947–961

    Article  Google Scholar 

  • Yu Y, Harris A, He X (2010) S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 56:848–850

    Article  PubMed  Google Scholar 

  • Zare H, Akbarinia M, Hosseini S, Ejtehadi H, Eshkevari TA (2010) A new record of Betula litwinowii (Betulaceae) and a review of the geographical distribution of the genus Betula L. In Iran. Iran J Bot 16(2):237–241

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Yousefzadeh.

Ethics declarations

Funding information

This work was supported partly by the Tarbiat Modares University.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

All used sequences in this study are available in Supplementary Data.

Additional information

Communicated by P. Ingvarsson

Author contributions

Hamed Yousefzadeh was the supervisor of this work and contributed to the data analyses and writing of the paper. Hamid Bina and Mohammad Esmailpour contributed to data collections and molecular lab work. Syed Shujait Ali assisted with the writing and English editing of this paper.

A correction to this article is available online at https://doi.org/10.1007/s11295-018-1228-2.

Electronic supplementary material

ESM 1

(DOCX 1336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bina, H., Yousefzadeh, H., Ali, S.S. et al. Phylogenetic relationships, molecular taxonomy, biogeography of Betula, with emphasis on phylogenetic position of Iranian populations. Tree Genetics & Genomes 12, 84 (2016). https://doi.org/10.1007/s11295-016-1037-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1037-4

Keywords

Navigation