Skip to main content
Log in

Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The improved clonal tea cultivars play a crucial role in the modern tea industry. In present study, we analyzed 128 elite clonal tea cultivars in China with 30 well-chosen simple sequence repeat (SSR) markers, aiming at (1) characterizing a set of DNA markers for unambiguously fingerprinting clonal tea cultivars and (2) confirming or identifying the parent-offspring (PO) relationships among them. The results showed that the markers are highly polymorphic among the tested cultivars with an average allele number of 10.4 per locus and an average polymorphic information content of 0.704. Robust fingerprinting power was demonstrated: It was possible to fully discriminate all 128 cultivars by a combination of four markers, and the overall possibility of finding two random individuals having the same genotypes across the 30 loci was estimated to be 4.8 × 10−33. Eight SSR loci were further recommended as a core marker set for fingerprinting the tea plant. Meanwhile, parentage analysis based on the fingerprint data revealed 47 pairs of putative PO relationships, among which 33 were in agreement with the known pedigree information, whereas the other 14 were newly identified in this study. The SSR markers and pedigree relationships reported here are valuable for tea cultivar identification and new breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chen L, Zhou ZX, Yang YJ (2007) Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154:239–248

    Article  CAS  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  CAS  PubMed  Google Scholar 

  • Duan YS, Jiang YH, Wang LY, Cheng H, Wang YH, Li XH (2011) Analysis of genetic diversity and relationship of tea cultivars and lines suitable for making green and black tea using SSR markers. Sci Agric Sin 44(1):99–109

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Cheng H, Duan Y, Jiang X, Li X (2012) Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Syst Evol 298:469–483

    Article  Google Scholar 

  • Fang WP, Meinhardt LW, Tan HW, Zhou L, Mischke S, Zhang D (2014) Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. Hortic Res 1:14035

    Article  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Léger P, Petit RJ (2011) Two highly validated multiplexes (12-plex and 8-plex) for species delimitation and parentage analysis in oaks (Quercus spp.). Mol Ecol Resour 11:578–585

  • Hayat K, Iqbal H, Malik U, Bilal U, Mushtaq S (2015) Tea and its consumption: benefits and risks. Crit Rev Food Sci Nutr 55(7):939–954

    Article  CAS  PubMed  Google Scholar 

  • Jones A, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30

    Article  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kaundun SS, Matsumoto S (2004) PCR-based amplicon length polymorphisms (ALPs) at microsatellite loci and indels from non-coding DNA regions of cloned genes as a means of authenticating commercial Japanese green teas. J Sci Food Agric 84:895–902

    Article  CAS  Google Scholar 

  • Lesser MR, Jackson ST (2013) Contributions of long-distance dispersal to population growth in colonising Pinus ponderosa populations. Ecol Lett 16:380–389

    Article  PubMed  Google Scholar 

  • Li XH, Shi ZP, Liu CL, Luo JW, Shen CW, Gong ZH (2001) Parentage identification of filial generation tea plants from “Yunnan Daye” and “Rucheng Baimao” with RAPD method. J Tea Sci 21(2):99–102

    CAS  Google Scholar 

  • Liang YR, Tanaka J, Takeda Y (2000) Parentage analysis of tea clone “Okumidori” with RAPD method. J Tea Sci 20(1):22–26

    CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhao Y, Yang P, Yang C, Ling J, Yang Y (2014) Comparison of parents identification for tea variety based on SSR, SRAP and ISSR markers. J Tea Sci 34(6):617–624

    CAS  Google Scholar 

  • Ma JQ, Zhou YH, Ma CL, Yao MZ, Jin JQ, Wang XC, Chen L (2010) Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant, Camellia sinensis (Theaceae). Am J Bot 97:e153–e156

    Article  CAS  PubMed  Google Scholar 

  • Ma JQ, Ma CL, Yao MZ, Jin JQ, Wang ZL, Wang XC, Chen L (2012) Microsatellite markers from tea plant expressed sequence tags (ESTs) and their applicability for cross-species/genera amplification and genetic mapping. Sci Hortic 134:167–175

    Article  CAS  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

  • Nei M, Tajima FA, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Sharangi AB (2009) Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—a review. Food Res Int 42:529–535

    Article  CAS  Google Scholar 

  • Summers K, Amos W (1997) Behavioral, ecological, and molecular genetic analyses of reproductive strategies in the Amazonian dart-poison frog, Dendrobates ventrimaculatus. Behav Ecol 8:260–267

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tan LQ, Wang LY, Wei K, Zhang CC, Wu LY, Qi GN, Cheng H, Zhang Q, Cui QM, Liang JB (2013) Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS One 8(11):e81611

    Article  PubMed Central  PubMed  Google Scholar 

  • Taniguchi F, Furukawa K, Ohta-Metoku S, Yamaguchi N, Ujihara T, Kono I, Fukuoka H, Tanaka J (2012) Construction of a high density reference linkage map of tea (Camellia sinensis). Breed Sci 62:263–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taniguchi F, Kimura K, Saba T, Ogino A, Yamaguchi S, Tanaka J (2014) Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genet Genomes 10(6):1555–1565

    Article  Google Scholar 

  • Tarroux E, DesRochers A, Tremblay F (2014) Molecular analysis of natural root grafting in jack pine (Pinus banksiana) trees: how does genetic proximity influence anastomosis occurrence? Tree Genet Genomes 10:667–677

    Article  Google Scholar 

  • Ujihara T, Ohta R, Hayashi N et al (2009) Identification of Japanese and Chinese green tea cultivars by using simple sequence repeat markers to encourage proper labeling. Biosci Biotechnol Biochem 73:15–20

    Article  CAS  PubMed  Google Scholar 

  • Ujihara T, Taniguchi F, Tanaka J, Hayashi N (2011) Development of expressed sequence tag (EST)-based cleaved amplified polymorphic sequence (CAPS) markers of tea plant and their application to cultivar identification. J Agric Food Chem 59:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHACKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wagner S, Gerber S, Petit RJ (2012) Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Mol Ecol Resour 12:717–725

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181(4):1579–1594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Sun X, Li Y, Jiang H, Song W, Liu B, Zhang Y, Ma L, Yi B, Duan Z (2011) Parentage identification of newly hybrid tea cultivar Foxiang series revealed by inter-simple sequence repeat markers. Acta Agric Boreali-occidentalis Sin 20(7):149–154

    CAS  Google Scholar 

  • Yang YJ, Liang YR (2014) Clonal tea cultivars in China. Shanghai Scientific and Technical Publishers, Shanghai

    Google Scholar 

  • Yang YJ, Yang SJ, Yang YH, Zeng JM (2003) The breeding of an early sprouting and high quality new clone suitable for fine green tea. J China Tea 25(2):13–15

    Google Scholar 

  • Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Liu Z, Zhao Y, Liang GQ (2010) Construction of DNA fingerprints for tea cultivars originated from Hunan Province. J Tea Sci 30(5):367–373

    CAS  Google Scholar 

  • Yao MZ, Ma CL, Qiao TT, Jin JQ, Chen L (2012) Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet Genomes 8:205–220

    Article  Google Scholar 

  • Zhang SG, Dong LJ, Yang Y, Liu Z, Wang X, Ning J (2009) Identification of male parents for “Yulv” and “Yusun” tea variety based on EST-SSR markers. J Tea Sci 29(6):430–435

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Twelfth Five-Year Project of Sichuan Province for Tea Plant Breeding, Science and Technology Department Project of Sichuan Province (2012-12CGZHZX0579) and The Earmarked Fund for Modern Agro-industry Technology Research System (nycytx-23).

Data archiving statement

We followed standard Tree Genetics and Genomes policy. All genotype data are provided in Online Resource 2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui-Nian Qi or Hao Cheng.

Additional information

Communicated by Y. Tsumura

This article is part of the Topical Collection on Germplasm Diversity

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 59 kb)

Online Resource 2

(XLSX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, LQ., Peng, M., Xu, LY. et al. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genetics & Genomes 11, 90 (2015). https://doi.org/10.1007/s11295-015-0914-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0914-6

Keywords

Navigation