Skip to main content
Log in

Genetic admixing of two evergreen oaks, Quercus acuta and Q. sessilifolia (subgenus Cyclobalanopsis), is the result of interspecific introgressive hybridization

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

In forests worldwide, Quercus is a major genus; however, the boundaries between the constituent species are relatively weak, and hybridization is reported frequently. In this study, we examined Quercus acuta and Quercus sessilifolia (subgenus Cyclobalanopsis), which have a putative hybrid—Q. x takaoyamensis. We investigated leaf morphological traits and microsatellites of Q. acuta and Q. sessilifolia in the area where the two species are both found. Although the leaf traits overlapped, the two species could be distinguished morphologically as demonstrated by principal component analysis based on a range of these traits. They were also genetically differentiated, with F ST = 0.104. However, they shared most of the alleles at all eight loci examined, and considerable genetic admixing was detected. Admixture analysis demonstrated that Q. acuta and Q. sessilifolia, respectively, contained 11 and 24 % of individuals with a probability of less than 0.9 of being correctly assigned to their species. Model-based testing showed that this admixing was created by not only shared ancestral polymorphism but also by hybridization. Effective population size and migration rate were estimated using the coalescent approach. We estimated 8.843 and 71.98 effective numbers of migrants per generation to Q. acuta and Q. sessilifolia, respectively. Theoretically, one to ten migrants per generation are required to prevent complete genetic differentiation. Based on the results of this study, it appears that genetic admixing, with sharing of most alleles, is probably common in the two species and is maintained by interspecific introgressive hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abadie P, Roussel G, Dencausse B, Bonnet C, Bertocchi E, Louvet J-M, Kremer A, Garnier-Gere P (2012) Strength, diversity and plasticity of postmating reproductive barriers between two hybridizing oak species (Quercus robur L. and Quercus petraea (Matt) Liebl.). J Evol Biol 25:157–173

    Article  CAS  PubMed  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 263:1619–1626

    Article  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci 98:4563–4568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326

    Article  PubMed Central  PubMed  Google Scholar 

  • Bull LN, Pabon-Pena CR, Freimer NB (1999) Compound microsatellite repeats: practical and theoretical features. Genome Res 9:830–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butlin RK (2010) Population genomics and speciation. Genetica 138:409–418

    Article  PubMed  Google Scholar 

  • Campana MG, Hunt HV, Jones H, White J (2011) Corrsieve: software for summarizing and evaluating Structure output. Mol Ecol Resour 11:349–352

    Article  CAS  PubMed  Google Scholar 

  • Cavender-Bares J, Pahlich A (2009) Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). Am J Bot 96:1690–1702

    Article  PubMed  Google Scholar 

  • Ciofi C, Beaumont MA, Swingland IR, Bruford MW (1999) Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc R Soc B 266:2269–2274

    Article  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of cluster of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Field DL, Ayre DJ, Whelan RJ, Young AG (2011) Patterns of hybridization and asymmetrical gene flow in hybrid zones of the rare Eucalyptus aggregata and common E. rubida. Heredity 106:841–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test genetic diversities and fixation indices (version 2.9.3). Available from <http://www2.unil.ch/popgen/softwares/fstat.htm>.

  • Guichoux E, Garnier-Gere P, Lagache L, Lang T, Boury C (2013) Outlier loci highlight the direction of introgression in oaks. Mol Ecol 22:450–462

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Zhang Y, Bartholomew B (1999) Fagaceae. In: Wu Z-Y, Raven PH (eds) Flora of China, vol 4. Science Press, Beijing, pp 314–400

    Google Scholar 

  • Isagi Y, Suhandono S (1997) PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species. Mol Ecol 6:897–899

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Ohtsuka K, Yamashita T (2007) Ecological distribution of seven evergreen Quercus species in southern and eastern Kyushu, Japan. Veg Sci 24:53–63

    Google Scholar 

  • Jakobusson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  Google Scholar 

  • Johnsson H (1945) Interspecific hybridization within the genus Betula. Hereditas 31:163–176

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kampfer S, Lexer C, Glossl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    Article  CAS  Google Scholar 

  • Kobayashi Y, Midorikawa T (1959) Dendrological studies of the Japanese Fagaceae: On the ripening term of the fruits of Quercus, Castanopsis and Pasania. Bull Gov For Exp Station 117:11–42 (in Japanese)

    Google Scholar 

  • Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Mol Ecol 18:2228–2242

    Article  CAS  PubMed  Google Scholar 

  • Lepais O, Roussel G, Hubert F, Kremer A, Gerber S (2013) Strength and variability of postmating reproductive isolating barriers between four European white oak species. Tree Genet Genomes 9:841–853

    Article  Google Scholar 

  • Lewis D, Crowe LK (1958) Unilateral interspecific incompatibility in flowering plants. Heredity 12:233–256

    Article  Google Scholar 

  • Lexer C, Kremer A, Petit RJ (2006) Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol 15:2007–2012

    Article  CAS  PubMed  Google Scholar 

  • Link WA, Barker RJ (2010) Bayesian inference with ecological applications. Academic Press, London

    Google Scholar 

  • Makino T (1920) A contributions to the knowledge of the flora of Japan. J Jpn Bot 2:13–16

    Google Scholar 

  • Martinsen GD, Whitham TG, Turek RJ, Keim P (2001) Hybrid populations selectively filter gene introgression between species. Evolution 55:1325–1335

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Kawahara T, Kanazashi A, Yoshimaru H, Takahashi M, Tsumura Y (2009) Differentiation of three closely related Japanese oak species and detection of interspecific hybrids using AFLP markers. Botany 87:145–153

    Article  CAS  Google Scholar 

  • Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conserv Biol 10:1509–1518

    Article  Google Scholar 

  • Moran EV, Willis J, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am J Bot 99:92–100

    Article  PubMed  Google Scholar 

  • Muir G, Schlotterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561

    Article  CAS  PubMed  Google Scholar 

  • Ohashi H, Ohashi K, Takahashi K (2006) Identify of Quercus acuta Thunb. (Fagaceae) recorded from Taiwan and China. Jpn J Bot 81:268–274 (in Japanese)

    Google Scholar 

  • Ohba H (2006) Fagaceae. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan, vol IIa. Kodansha Scientific, Tokyo, pp 42–60

    Google Scholar 

  • Ohyama M, Baba K, Itoh T (1999) Possibility of grouping of Cyclobalanopsis species (Fagaceae) grown in Japan based on an analysis of several regions of chloroplast DNA. J Wood Sci 45:498–501

    Article  CAS  Google Scholar 

  • Ohyama M, Baba K, Itoh T (2001) Wood identification of Japanese Cyclobalanopsis species (Fagaceae) based on DNA polymorphism of the intergenic spacer between trnT and trnL 5' exon. J Wood Sci 47:81–86

    Article  CAS  Google Scholar 

  • Palme AE, Su Q, Palsson S, Lascoux M (2004) Extensive sharing of chloroplast haplotypes among European birches indicates hybridization among Betula pendula, B. pubescens and B. nana. Mol Ecol 13:167–178

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A (2003) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    Article  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Potts BM, Dungey HS (2004) Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists. New For 27:115–138

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Scotti-Saintagne C, Mariette S, Porth I, Goicoechea PG, Barreneche T, Bodenes C, Burg K, Kremer A (2004) Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 168:1615–1626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steinhoff S (1993) Results of species hybridizaition with Quercus robur L and Quercus petraea (Matt) Liebl. Ann For Sci 50:137s–143s

    Article  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff A, Kremer A, Burg K, Glossl J (1997) Identification and characterization of (GA/CT) n -microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Stettler RF, Zsuffa L, Wu R (1996) The role of hybridization in the genetic manipulation of Populus. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus: and its implications for management and conservation, vol I. NRC Research Press, Ontario, pp 87–112

    Google Scholar 

  • Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Proc R Soc B 268:861–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueno S, Taguchi Y, Tsumura Y (2008) Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags. Genes Genet Syst 83:179–187

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Tsumura Y (2008) Development of ten microsatellite markers for Quercus mongolica var. crispula by database mining. Conserv Genet 9:1083–1085

    Article  CAS  Google Scholar 

  • Valbuena-Carabana M, Gonzalez-Martinez SC, Sork VL, Soto A, Goicoechea PG (2005) Gene flow and hybridization in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain. Heredity 95:457–465

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Via S (2009) Natural selection in action during speciation. Proc Natl Acad Sci 106:9939–9946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J (2004) Application of the one-migrant-per-generation rule to conservation and management. Conserv Biol 18:332–343

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed Central  PubMed  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita T, Nagai Y, Shoji T (1999) Quercus takaoyamensis Makino and Q. sessilifolia Blume (Fagaceae) at Jourakuji in Fuchu-machi, Toyama Prefecture. Bull Bot Gard Toyama 4:43–46 (in Japanese with English abstract)

    Google Scholar 

  • Yan L, Zhe-Kun Z (2002) Leaf architecture in Quercus subgenus Cyclobalanopsis (Fagaceae) from China. Bot J Linn Soc 140:283–295

    Article  Google Scholar 

  • Zeng Y-F, Liao W-J, Petit RJ, Zhang D-Y (2011) Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation. Mol Ecol 20:4995–5011

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to N. Tomaru, S. Setsuko, N. Nakanishi, and Y. Hasegawa for their support with the genetic experiment; M. Tsuruta, T. Okada, Y. Watanabe, and H. Tabata for useful discussions; and N. Yanagisawa, K. Tsuda, and the members of the Laboratory of Satoyama for their help with the sample collections. We also thank the two anonymous reviewers for their helpful comments on the previous manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

We follow standard Tree Genetics and Genomes policy, and all geotype and phenotype data are deposited in the Dryad Repository doi:10.5061/dryad.c959s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Tamaki.

Additional information

Communicated by I. J. Chybicki

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaki, I., Okada, M. Genetic admixing of two evergreen oaks, Quercus acuta and Q. sessilifolia (subgenus Cyclobalanopsis), is the result of interspecific introgressive hybridization. Tree Genetics & Genomes 10, 989–999 (2014). https://doi.org/10.1007/s11295-014-0737-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0737-x

Keywords

Navigation