Skip to main content
Log in

Selection of low-variance expressed Malus x domestica (apple) genes for use as quantitative PCR reference genes (housekeepers)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

To accurately measure gene expression using PCR-based approaches, there is the need for reference genes that have low variance in expression (housekeeping genes) to normalise the data for RNA quantity and quality. For non-model species such as Malus x domestica (apples), previously, the selection of reference genes relied on using homology to reference genes in model species. In this study, a genomics approach was used to identify apple genes with low variance in expression in 217 messenger RNA (mRNA)-seq data sets covering different tissues, during fruit development, and treated with a range of different stress conditions. Ten potential reference genes were chosen for validation by quantitative PCR (qPCR) over 29 different tissue types and treatments. From the combined mRNA-seq and qPCR results, three potential reference genes are proposed that can be used as good controls for PCR based expression studies. The three genes show homology to lipid transfer proteins, phytochrome protein phosphatase and the ubiquitination pathway. With the progression of research away from non-model species, this approach provides a robust method for selecting candidate genes for use as reference genes in qPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amil-Ruiz F, Garrido-Gala J, Blanco-Portales R, Folta KM, Munoz-Blanco J, Caballero JL (2013) Identification and validation of reference genes for transcript normalization in strawberry (Fragaria x ananassa) defense responses. PloS One 8:e70603. doi:10.1371/journal.pone.0070603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.can-04-0496

    Article  CAS  PubMed  Google Scholar 

  • Atkinson RG, Sutherland PW, Johnston SL, Gunaseelan K, Hallett IC, Mitra D, Brummell DA, Schroeder R, Johnston JW, Schaffer RJ (2012) Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC Plant Biol 12:129. doi:10.1186/1471-2229-12-129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bulley SM, Rassam M, Hoser D, Otto W, Schuenemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778. doi:10.1093/jxb/ern327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang SJ, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116. doi:10.1007/bf02670468

    Article  CAS  Google Scholar 

  • Chen L, Zhong H-y, Kuang J-f, Li J-g, Lu W-j, Chen J-y (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390. doi:10.1007/s00425-011-1410-3

    Article  CAS  PubMed  Google Scholar 

  • Cin VD, Danesin M, Boschetti A, Dorigoni A, Ramina A (2005) Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L. Borck). J Exp Bot 56:2995–3005. doi:10.1093/jxb/eri296

    Article  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17. doi:10.1104/pp. 105.063743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, Ling TJ, Ross JJ, Hallett IC, Gunaseelan K, Dayatilake GA, Diak R, Breen KC, Tustin DS, Costes E, Chagne D, Schaffer RJ, David KM (2012) A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biol 12:7. doi:10.1186/1471-2229-12-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427. doi:10.1111/j.1365-313X.2006.02964.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus x domestica Borkh.). Plant Breed 126:137–145. doi:10.1111/j.1439-0523.2007.01344.x

    Article  CAS  Google Scholar 

  • Flachowsky H, Haettasch C, Hoefer M, Peil A, Hanke M-V (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263. doi:10.1007/s00425-009-1041-0

    Article  CAS  PubMed  Google Scholar 

  • Foster T, Watson A, Hooijdonk B, Schaffer R (2013) Key flowering genes including FT-like genes are upregulated in the vasculature of apple dwarfing rootstocks. Tree Genet Genomes 1-14:629–638. doi:10.1007/s11295-013-0675-z

    Google Scholar 

  • Gadiou S, Kundu JK (2012) Evaluation of reference genes for the relative quantification of apple stem grooving virus and apple mosaic virus in apple trees. Indian J Virol 23:39–41. doi:10.1007/s13337-012-0065-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gasic K, Gonzalez DO, Thimmapuram J, Liu L, Malnoy M, Gong G, Han Y, Vodkin LO, Aldwinckle HS, Carroll NJ, Orvis KS, Goldsbrough P, Clifton S, Pape D, Fulton L, Martin J, Theising B, Wisniewski ME, Fazio G, Feltus FA, Korban SS (2009) Comparative analysis and functional annotation of a large expressed sequence Tag collection of apple. Plant Genome 2:23–38. doi:10.3835/plantgenome2008.11.0014

    Article  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:r19. doi:10.1186/gb-2007-8-2-r19

    Article  PubMed Central  PubMed  Google Scholar 

  • Ireland HS, Guillen F, Bowen J, Tacken EJ, Putterill J, Schaffer RJ, Johnston JW (2012) Mining the apple genome reveals a family of nine ethylene receptor genes. Postharvest Biol Technol 72:42–46. doi:10.1016/j.postharvbio.2012.05.003

    Article  CAS  Google Scholar 

  • Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16. doi:10.1186/1471-2229-8-16

    Article  PubMed Central  PubMed  Google Scholar 

  • Kou S-J, Wu X-M, Liu Z, Liu Y-L, Xu Q, Guo W-W (2012) Selection and validation of suitable reference genes for miRNA expression normalization by quantitative RT-PCR in citrus somatic embryogenic and adult tissues. Plant Cell Rep 31:2151–2163. doi:10.1007/s00299-012-1325-x

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Yuan R (2008) NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in 'Delicious' apples. J Plant Growth Regul 27:283–295. doi:10.1007/s00344-008-9055-6

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data P (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Ge X-X, Wu X-M, Kou S-J, Chai L-J, Guo W-W (2013) Selection and validation of suitable reference genes for mRNA qRT-PCR analysis using somatic embryogenic cultures, floral and vegetative tissues in citrus. Plant Cell, Tissue Organ Cult 113:469–481. doi:10.1007/s11240-013-0288-0

    Article  CAS  Google Scholar 

  • Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP, Rodrigues CM, Machado MA (2012) Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PloS One 7:e31263. doi:10.1371/journal.pone.0031263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166. doi:10.1104/pp. 105.076208

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. doi:10.1023/b:bile.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol(Clifton, NJ) 132:365–386

    CAS  Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J-L, Newcomb RD (2007) A Genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway(w). Plant Physiol 144:1899–1912. doi:10.1104/pp. 106.093765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM (2013) SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. AoB Plants 5:pls047

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506. doi:10.1038/ng1543

    Article  CAS  PubMed  Google Scholar 

  • Su H, Zhang S, Yuan X, Chen C, Wang X-F, Hao Y-J (2013) Genome-wide analysis and identification of stress-responsive genes of the NAM–ATAF1,2–CUC2 transcription factor family in apple. Plant Physiol Biochem 71:11–21. doi:10.1016/j.plaphy.2013.06.022

    Article  CAS  PubMed  Google Scholar 

  • Tacken E, Ireland H, Gunaseelan K, Karunairetnam S, Wang D, Schultz K, Bowen J, Atkinson RG, Johnston JW, Putterill J, Hellens RP, Schaffer RJ (2010) The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiol 153:294–305. doi:10.1104/pp. 109.151092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:242. doi:10.1186/gb-2002-3-7-research0034

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus x domestica Borkh). Nat Genet 42:833–839. doi:10.1038/ng.654

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Zhang R, Gu C, Wu J, Wan H, Zhang S, Zhang S (2012) Evaluation of candidate reference genes for real time quantitative PCR normalization in pear fruit. Afr J Agric Res 7:3701–3704

    Google Scholar 

  • Zhong S, Joung J-G, Zheng Y, Chen Y-r, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ (2011) High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc 2011:940–949. doi:10.1101/pdb.prot5652

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Niels Nieuwenhuizen for critically reading this manuscript and acknowledge New Zealand MBIE (Pipfruit, ‘a juicy future’, contract ID C06X0705) and the US USDA:SCRI (Postharvest Toolbox) for funding this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

To generate the widest possible set for analysis, the data presented in this experiment are from a diverse range of independent experiments, these include data published in (Foster et al. 2013; Schaffer et al. 2013). The rest will be published and archived elsewhere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Schaffer.

Additional information

Communicated by D. Chagné

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

Genious alignment for primers figure (PPTX 351 kb)

Fig. 2

mRNA-seq vs qPCR CV(%) (PPTX 60 kb)

Fig. 3

Pairwise variation (Vn/n + 1) to determine the number of genes required for accurate normalisation from geNorm (PPTX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowen, J., Ireland, H.S., Crowhurst, R. et al. Selection of low-variance expressed Malus x domestica (apple) genes for use as quantitative PCR reference genes (housekeepers). Tree Genetics & Genomes 10, 751–759 (2014). https://doi.org/10.1007/s11295-014-0720-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0720-6

Keywords

Navigation