Skip to main content
Log in

Comparative chloroplast and nuclear DNA analysis of Castanea species in the southern region of the USA

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Boundaries between American Castanea species (Castanea dentata, the American chestnut and C. pumila var. pumila, the Allegheny chinkapin, and var. ozarkensis, the Ozark chinkapin) have been difficult to establish because of intraspecific variation, interspecific similarities and the incidence of chestnut blight, which has prevented trees from maturing. In this study, informative chloroplast (cp) DNA and nuclear sequences from Castanea taxa were analyzed to gain a better understanding of their phylogeography in North America. Our emphasis has been on the most southern Castanea population in the Appalachian region, known for its morphological diversity. This Ruffner Mountain (Alabama) population shows a high number of unique haplotypes, which can be divided into two main groups. One group shares homology with the widespread and evolutionarily recent C. dentata haplotype. The other group shares homology with American chestnuts and Allegheny chinkapin taxa from southern states. This group has been the result of recent and more ancient cp capture and hybridization, indicative of hybrid zone clustering and glacial refugial origin. The range of C. pumila must have been more extensive along the Coastal Plains region, since only a few mutations separate the Ozark chinkapin from the main Allegheny chinkapin haplotype. The geographic origin of the American Castanea species complex appears to be in the Gulf Coast region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amato ML, Brooks RJ, FU J (2008) A phylogeographic analysis of populations of wood turtle (Glyptemys insculpta) throughout its range. Mol Ecol 17:570–581

    PubMed  CAS  Google Scholar 

  • Ames M, Salas A, Spooner DM (2007) The discovery and phylogenetic implications of a novel 41 bp plastic DNA detection in wild potatoes. Plant Syst Evol 268:159–175

    Article  CAS  Google Scholar 

  • Anagnostakis SA (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–27

    Article  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history and evolution. Sinauer Ass Inc, Sunderland

    Google Scholar 

  • Binkley M (2008). Phylogeography of Northeast America Castanea. MS Thesis. University of Tennessee at Chattanooga

  • Burnham CR (1988) The restoration of the American chestnut. Am Sci 76:478–487

    Google Scholar 

  • Casasoli M, Deroy J, Morera-Dutry C, Brendel O, Porth I, Guehl JM, Villani F, Kremer A (2006) Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 105:533–546

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Dane F (2009) Comparative phylogeography of Castanea species. Proceeding of the Fourth International Chestnut Symposium. Acta Horticult 844:211–222

    Google Scholar 

  • Dane F, Lang P (2008) Biodiversity and evolution of Castanea. In: Sharma AK, Sharma A (eds) In: Plant Genome Biodiversity and Evolution. Phanerograms (gymnosperm) and (angiosperm-monocotyledons). Science Publishers, NH, pp 79–100, Chapter 4

    Google Scholar 

  • Davis MB (1983) Quaternary history of deciduous forests of eastern North American and Europe. Annals Missouri Bot Garden 70:550–563

    Article  Google Scholar 

  • Delcourt HR (2002) Forests in peril. Tracking deciduous trees from ice age refuges into the greenhouse world. McDonald and Woodward, VA

    Google Scholar 

  • Eidesen PB, Alsos IG, Popp M, Stensrud O, Suda J, Brochmann C (2007) Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Mol Ecol 16:3902–3925

    Article  PubMed  CAS  Google Scholar 

  • Griffin G (2008) Recent advances in research and management of chestnut blight on American chestnut. Phytopathology 98:S7–S7

    Google Scholar 

  • Griffin SR, Barrett SCH (2004) Post-glacial history of Trillium grandiflorum (Melanthiaceae) in eastern North America: inferences from phylogeography. Am J Bot 90:465–473

    Article  Google Scholar 

  • Guicking D, Fiala B, Blattner FR, Slik F, Mohamed M, Weising K (2011) Comparative chloroplast phylogeography of two tropical pioneer trees, Macaranga gigantae and Macaranga pearsonii (Euphorbiaceae). Tree Gen Genomes 7:573–585

    Article  Google Scholar 

  • Heinze B (2002) Chloroplast DNA primers. http://fbva.forvie.ac.at/200/1982.html

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Carey WA, Dane F, Norton JD (1996) Evaluation of Chinese chestnut cultivars for resistance to Cryphonectria parasitica. Plant Dis 80:45–47

    Article  Google Scholar 

  • Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction and the consequences for phylogenetic inference. Mol Biol Evol 23:1601–1612

    Article  Google Scholar 

  • Jaynes R (1975) Chestnut. In: Moore J (ed) Advances in fruit breeding, 490-503. Purdue University Press, IN

    Google Scholar 

  • Johnson GP (1988) Revision of Castanea sect. Balanocastanon (Fagaceae). J Arnold Arboretum 69:25–49

    Google Scholar 

  • Kubisiak TL, Roberds JH (2003) Genetic variation in natural populations of American chestnut. J. American Chestnut Foundation. Science and natural history XVI: 43-48

  • Kubisiak TL, Roberds JH (2006) Genetic structure of American chestnut populations based on neutral DNA markers. Proceeding of conference and workshop: Restoration of American chestnut to forest lands, Steiner KC and Carlson JE (Eds), National Park Service, Washington, DC

  • Kubisiak TL, Hebard FV, Nelson CD, Zhang J, Bernatzky R, Huang H, Anagnostakis SL, Doudrick RL (1997) Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea. Phytopathology 87:751–759

    Article  PubMed  CAS  Google Scholar 

  • Lang P, Dane F, Kubisiak TL (2006) Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L sequence data. Tree Gen Genomes 2:132–139

    Article  Google Scholar 

  • Lang P, Dane F, Kubisiak TL, Huang HW (2007) Molecular evidence for an Asian origin and a unique westward migration of species in the genus Castanea via Europe to North America. Mol Phylogen Evol 43:49–59

    Article  CAS  Google Scholar 

  • Milgroom MG, Wang K, Zhou Y, Lapari SE, Kanko S (1996) Intercontinental population structure of the chestnut blight fungus, Cryphonectria parasitica. Mycologia 88:179–190

    Article  Google Scholar 

  • Morris AB, Ickert-Bond SM, Brunson DB, Soltis DE, Soltis PS (2008) Phylogeographical structure and temporal complexity in American sweetgum (Liquidambar styraciflua; Altingiaceae). Mol Ecol 17:3889–3900

    Article  PubMed  CAS  Google Scholar 

  • Muir G, Lowe AJ, Fleming CC, Vogl C (2004) High nuclear genetic diversity, high levels of outcrossing and low differentiation among remnant populations of Quercus petraea at the margin of its range in Ireland. Annals Bot 93:691–697

    Article  CAS  Google Scholar 

  • Paillet FL (1993) Growth form and life-histories of American chestnut and Allegheny and Ozark chinquapin at various North-American sites. Bull Torrey Bot Club 120:257–268

    Article  Google Scholar 

  • Payne J, Miller G, Johnson GP, Senter SD (1994) Castanea pumila (L) Mill: an underused native nut tree. HortSci 29:62–131

    Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck G, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  • Rissler LJ, Smith WH (2010) Mapping amphibian contact zones and phylogeographical break hotspots across the United States. Mol Ecol 19:5404–5416

    Article  PubMed  Google Scholar 

  • Rutter PA, Miller G, Payne JA (1991) Chestnuts (Castanea). Genetic resources of temperate fruit and nut crops. Acta Horticult 90:761–788

    Google Scholar 

  • Schafleitner R, Wilhelm E (2002) Isolation of would-responsive genes from chestnut (Castanea sativa) microstems by mRNA display and their differential expression upon wounding and infection with the chestnut blight fungus (Cryphonectria parasitica). Mol Plant Path 61:339–348

    Article  CAS  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  PubMed  CAS  Google Scholar 

  • Simmons MP, Ochotreana H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North American. Mol Ecol 15:4261–4293

    Article  PubMed  Google Scholar 

  • Soltis DE, Moore MJ, Burleigh G, Soltis PS (2009) Molecular markers and concepts of plant evolutionary relationships: progress, promise and future prospects. Critical Rev Plant Sci 28:1–15

    Article  CAS  Google Scholar 

  • Stillwell KL, Wilbure HM, Werth CR, Taylor DR (2003) Heterozygote advantage in the American chestnut, Castanea dentata (Fagaceae). Am J Bot 90:207–213

    Article  Google Scholar 

  • Swenson NG, Howard DJ (2005) Clustering of contact zones, hybrid zones and phylogeogprahic breaks in North America. Amer Nat 166:581–591

    Article  Google Scholar 

  • Swofford DL ( 2000). PAUP. Phylogenetic analysis using parsimony. Version 4. Sinauer, MA

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Watts WA, Hansen BCS (1994) Pre-Holocene and Holocene pollen records of vegetation history from the Florida peninsula and their climatic implications. Pleogeogr Paleoclimatol Paleoecol 109:163–176

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank The American Chestnut Foundation for partial financial support and members from its state chapters, especially Martin Schulman and Fred Hebard, for help with collection and identification of field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenny Dane.

Additional information

Communicated by A. Kremer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Dane, F. Comparative chloroplast and nuclear DNA analysis of Castanea species in the southern region of the USA. Tree Genetics & Genomes 9, 107–116 (2013). https://doi.org/10.1007/s11295-012-0538-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0538-z

Keywords

Navigation