Skip to main content
Log in

Estimating population boundaries using regional and local-scale spatial genetic structure: an example in Eucalyptus globulus

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Eucalyptus globulus Labill is a foundation tree species over its disjunct distribution in southeastern Australia. The quality of its pulp makes it the most important hardwood species in the world. The importance of E. globulus prompted the establishment of common gardens from seed collected across its geographic range. This enabled us to study the genetic structure of the species, its population boundaries, and gene flow using 444 trees from different open-pollinated families that were genotyped at 16 microsatellite loci. A Bayesian clustering method was used to resolve five genetically distinct groups across the geographical range. These groups were identified as regions, which varied in diameter from 38 to 294 km and contain 4 to 16 putative populations. For two of these regional groups, we used spatial autocorrelation analysis based on assignment of trees to their natural stands to examine gene flow within each region. Consistent significant local-scale spatial structure occurred in both regions. Pairs of individuals within a region showed significant genetic similarity that extended beyond 40 km, suggesting distant movement of pollen. This suggests that breeding populations in E. globulus are much bigger than traditionally accepted in eucalypts. Our results are important for the management of genetic diversity and breeding populations in E. globulus. Similar studies of a variety of eucalypts pollinated by insects and birds will determine whether the local-scale genetic structure of E. globulus is unusual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrew RL, Peakall R, Wallis IR, Foley WJ (2007a) Spatial distribution of defense chemicals and markers and the maintenance of chemical variation. Ecology 88:716–728

    Article  PubMed  Google Scholar 

  • Andrew RL, Wallis IR, Harwood CE, Henson M, Foley WJ (2007b) Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153:891–901

    Article  PubMed  Google Scholar 

  • Barbour RC, O’Reilly-Wapstra JM, De Little DW, Jordan GJ, Steane DA, Humphreys JR, Bailey JK, Whitham TG, Potts BM (2009) A geographic mosaic of genetic variation within a foundation tree species and its community-level consequences. Ecology 90:1762–1772

    Article  PubMed  Google Scholar 

  • Beck NR, Peakall R, Heinsohn R (2008) Social constraint and an absence of sex-biased dispersal drive fine-scale genetic structure in white-winged choughs. Mol Ecol 17:4346–4358

    Article  PubMed  CAS  Google Scholar 

  • Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827

    Article  CAS  Google Scholar 

  • Butcher PA, Skinner AK, Gardiner CA (2005) Increased inbreeding and inter-species gene flow in remnant populations of the rare Eucalyptus benthamii. Conserv Genet 6:213–226

    Article  Google Scholar 

  • Butcher PA, McDonald MW, Bell JC (2009) Congruence between environmental parameters, morphology and genetic structure in Australia’s most widely distributed eucalypt, Eucalyptus camaldulensis. Tree Genet Genomes 5:189–210

    Article  Google Scholar 

  • Cann JH, Belperio AP, Gostin VA, Murraywallace CV (1988) Sea-level history, 45 000 to 30 000 yr BP inferred from benthic foraminifera, Gulf St Vincent, South Australia. Quat Res 29:153–175

    Article  Google Scholar 

  • Dutkowski GW, Potts BM (1999) Geographic patterns of genetic variation in Eucalyptus globulus ssp globulus and a revised racial classification. Aust J Bot 47:237–263

    Article  Google Scholar 

  • Earl DA (2011) Structure harvester v0.6.1 Available at http://taylor0.biology.ucla.edu/struct_harvest/

  • Epperson BK (2005) Estimating dispersal from short distance spatial autocorrelation. Heredity 95:7–15

    Article  PubMed  CAS  Google Scholar 

  • Epperson BK (2007) Plant dispersal, neighbourhood size and isolation by distance. Mol Ecol 16:3854–3865

    Article  PubMed  Google Scholar 

  • Escudero A, Iriondo JM, Torres ME (2003) Spatial analysis of genetic diversity as a tool for plant conservation. Biol Conserv 113:351–365

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Ford J (1987) Minor isolates and minor geographical barriers in avian speciation in continental Australia. Emu 87:90–102

    Article  Google Scholar 

  • Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505

    Article  Google Scholar 

  • Freeman JS, Jackson HD, Steane DA, McKinnon GE, Dutkowski GW, Potts BM, Vaillancourt RE (2001) Chloroplast DNA phylogeography of Eucalyptus globulus. Aust J Bot 49:585–596

    Article  CAS  Google Scholar 

  • Gardiner C, Crawford D (1987, 1988) Seed collections of Eucalyptus globulus subsp. globulus for tree improvement purposes. Tree Seed Centre, CSIRO Division of Forest Research report, Canberra

  • Glaubitz JC (2004) CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    Article  CAS  Google Scholar 

  • Glaubitz JC, Emebiri LC, Moran GF (2001) Dinucleotide microsatellites from Eucalyptus sieberi: inheritance, diversity, and improved scoring of single-base differences. Genome 44:1041–1045

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929

    Article  PubMed  CAS  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    Article  PubMed  CAS  Google Scholar 

  • Hingston AB, Gartrell BD, Pinchbeck G (2004) How specialized is the plant–pollinator association between Eucalyptus globulus ssp globulus and the swift parrot Lathamus discolor? Austral Ecol 29:624–630

    Article  Google Scholar 

  • Jackson HD, Steane DA, Potts BM, Vaillancourt RE (1999) Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae). Mol Ecol 8:739–751

    Article  Google Scholar 

  • Jones TH, Vaillancourt RE, Potts BM (2007) Detection and visualization of spatial genetic structure in continuous Eucalyptus globulus forest. Mol Ecol 16:697–707

    Article  PubMed  CAS  Google Scholar 

  • Jordan GJ, Potts BM, Kirkpatrick JB, Gardiner C (1993) Variation in the Eucalyptus globulus complex revisited. Aust J Bot 41:763–785

    Article  Google Scholar 

  • Krauss SL, Koch JM (2004) Rapid genetic delineation of provenance for plant community restoration. J Appl Ecol 41:1162–1173

    Article  Google Scholar 

  • Krauss SL, Hermanutz L, Hopper SD, Coates DJ (2007) Population-size effects on seeds and seedlings from fragmented eucalypt populations: implications for seed sourcing for ecological restoration. Aust J Bot 55:390–399

    Article  Google Scholar 

  • Külheim C, Yeoh SH, Maintz J, Foley WJ, Moran GF (2009) Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genomics 10:452

    Article  PubMed  Google Scholar 

  • Külheim C, Yeoh SH, Wallis IR, Laffan S, Moran GF, Foley WJ (2011) The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol 191:1041–1053

    Article  PubMed  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic Data Analysis: computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet from http://lewis.eeb.uconn.edu/lewishome/software.html

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Mac Nally R, Horrocks G (2000) Landscape-scale conservation of an endangered migrant: the swift parrot (Lathamus discolor) in its winter range. Biol Conserv 92:335–343

    Article  Google Scholar 

  • Marquardt PE, Epperson BK (2004) Spatial and population genetic structure of microsatellites in white pine. Mol Ecol 13:3305–3315

    Article  PubMed  CAS  Google Scholar 

  • McKinnon GE, Potts BM, Steane DA, Vaillancourt RE (2005) Population and phylogenetic analysis of the cinnamoyl coA reductase gene in Eucalyptus globulus (Myrtaceae). Aust J Bot 53:827–838

    Article  CAS  Google Scholar 

  • McKinnon GE, Smith JJ, Potts BM (2010) Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species. Mol Ecol 19:1367–1380

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Ottewell KM, Donnellan SC, Moran GF, Paton DC (2005) Multiplexed microsatellite markers for the genetic analysis of Eucalyptus leucoxylon (Myrtaceae) and their utility for ecological and breeding studies in other Eucalyptus species. J Hered 96:445–451

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalo grass Buchloe dactyloides. Mol Ecol 4:135–147

    Article  CAS  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195

    PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rambaut A (2008) FigTree v1.1.1. University of Edinburgh, Edinburgh

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17:3389–3400

    Article  PubMed  Google Scholar 

  • Steane DA, Conod N, Jones RC, Vaillancourt RE, Potts BM (2006) A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genet Genomes 2:30–38

    Article  Google Scholar 

  • Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol 59:206–224

    Article  PubMed  Google Scholar 

  • Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glossl J, Kremer A (1998) Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7:317–328

    Article  Google Scholar 

  • Thamarus KA, Groom K, Murrell J, Byrne M, Moran GF (2002) A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre, and floral traits. Theor Appl Genet 104:379–387

    Article  PubMed  CAS  Google Scholar 

  • Thumma BR, Southerton SG, Bell JC, Owen JV, Henery ML, Moran GF (2010) Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genet Genomes 6:305–317

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  PubMed  CAS  Google Scholar 

  • Wallis IR, Keszei A, Henery ML, Moran GF, Forrester R, Maintz J, Marsh KJ, Andrew RL, Foley WJ (2011) A chemical perspective on the evolution of variation in Eucalyptus globulus. Perspect Plant Ecol, Evol Syst 13:305–318

    Article  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Yeh F, Yang R-C, TBJ B, Z-H Y, JX M (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada. http://www.ualberta.ca/~fyeh/index.htm.

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The field collections of E. globulus were done jointly with CSIRO Forest Biosciences. We thank Gunns Pty Ltd. for access to the field trial of E. globulus. The work was supported by a grant (LP667708) from the Australian Research Council (ARC) to WJF. We gratefully acknowledge financial support of Oji Paper Company Ltd and Forests NSW. We are grateful to Professor Rod Peakall and Dr. Simon Ho for their invaluable advice and for reviewing the manuscript. Many thanks to Dr. Rose Andrew for her help in revising the manuscript. We thank the anonymous reviewers and the associate editor for their valuable comments which have greatly improved the manuscript. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suat Hui Yeoh.

Additional information

Communicated by S. Aitken

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 166 kb)

ESM 2

(PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeoh, S.H., Bell, J.C., Foley, W.J. et al. Estimating population boundaries using regional and local-scale spatial genetic structure: an example in Eucalyptus globulus . Tree Genetics & Genomes 8, 695–708 (2012). https://doi.org/10.1007/s11295-011-0457-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0457-4

Keywords

Navigation