, Volume 3, Issue 2, pp 111-118
Date: 07 Oct 2006

Restoration of threatened species: a noble cause for transgenic trees

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Some of the first applications of transgenic trees in North America may be for the conservation or restoration of threatened forest trees that have been devastated by fungal pathogens or insect pests. In some cases, where resistance has yet to be found in the natural population of a tree species, incorporating genes from other organisms may offer the only hope for restoration. In others, transgenics may play a role as part of an integrated approach, along with conventional breeding or biocontrol agents. American chestnut (Castanea dentata) was wiped out as a canopy species by a fungal disease accidentally introduced into the United States around 1900. Similarly, American elm (Ulmus americana) virtually disappeared as a favored street tree from Northeastern U.S. cities after the introduction of the Dutch elm disease fungus in the 1940s. In both cases, progress has been made toward restoration via conventional techniques such as selection and propagation of tolerant cultivars (American elm) or breeding with a related resistant species (American chestnut). Recently, progress has also been made with development of systems for engineering antifungal candidate genes into these “heritage trees.” An Agrobacterium-leaf disk system has been used to produce transgenic American elm trees engineered with an antimicrobial peptide gene that may enhance resistance to Dutch elm disease. Two gene transfer systems have been developed for American chestnut using Agrobacterium-mediated transformation of embryogenic cultures, setting the stage for the first tests of potential antifungal genes for their ability to confer resistance to the chestnut blight fungus. Despite the promise of transgenic approaches for restoration of these heritage trees, a number of technical, environmental, economic, and ethical questions remain to be addressed before such trees can be deployed, and the debate around these questions may be quite different from that associated with transgenic trees developed for other purposes.