Skip to main content
Log in

Colony-dependent sex differences in protozoan communities of the lower termite Reticulitermes speratus (Isoptera: Rhinotermitidae)

  • Original Article
  • Published:
Ecological Research

Abstract

In many animals, sex differences in hormones, behavior, and immunity lead to differences in their gut microbial communities. One of the best-known examples of mutualistic symbiosis is that between lower termites and their intestinal protozoa. Although differences in the protozoan communities of different castes have been studied in lower termites, nothing is known about the sex differences in protozoan communities in neuter castes. Here, we show that termite workers have different protozoan communities according to sex depending on the colony. We investigated the communities of symbiotic protozoa living in lower termites, Reticulitermes speratus, and how they are affected by sex and caste. Workers had the largest numbers of protozoa, followed by soldiers, whereas reproductives (primary kings and secondary queens) had no protozoa. Workers showed colony-dependent sex differences in the total abundance of protozoa, whereas soldiers showed no such sex differences. There were significant sex effect and/or interaction effect between colony and sex in abundances of five species of protozoa in workers. Workers also showed significant sex differences and/or colony-dependent sex differences in proportion of six species of protozoa. These may result in sex differences in the host–symbiont interaction due to physiological or behavioral sex differences in workers that have not been recognized previously. This study has an important implication: although workers are not engaged in reproduction, their potential sex difference may affect various aspects of social interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrew BJ (1930) Method and rate of protozoan refaunation in the termite Termopsis angusticollus Hagen. Calif Univ Publ Zool 33:449–470

    Google Scholar 

  • Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, Lusis AJ, Knight R, Caporaso JG, Svanbäck R (2014) Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. doi:10.1038/ncomms5500

    PubMed  PubMed Central  Google Scholar 

  • Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci 9:424–428. doi:10.1073/pnas.9.12.424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland LR (1925) The feeding habit of termite castes and its relation to their intestinal flagellates. Biol Bull 48:295–308. doi:10.1017/CBO9781107415324.004

    Article  CAS  Google Scholar 

  • Cleveland LR (1949) Hormone-induced sexual cycles of flagellates. J Morphol 85:197–295

    Article  CAS  PubMed  Google Scholar 

  • Cook TJ, Gold RE (1998) Organization of the symbiotic flagellate community in three castes of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 31:25–39

    Google Scholar 

  • Cook TJ, Gold RE (1999) Symbiotic hindgut flagellate communities of the subterranean termites Reticulitermes virginicus and Reticulitermes flavipes in Texas (Isoptera: Rhinotermitidae). Sociobiology 34:533–544

    Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. doi:10.1038/nrn3346

    Article  CAS  PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 107:14691–14696. doi:10.1073/pnas.1005963107

    Article  PubMed  PubMed Central  Google Scholar 

  • De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, Denou E, Silva MA, Santacruz A, Sanz Y, Surette MG, Verdu EF, Collins SM, Bercik P (2015) Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 6:7735. doi:10.1038/ncomms8735

    Article  PubMed  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735. doi:10.1111/1574-6976.12025

    Article  CAS  PubMed  Google Scholar 

  • Feldman M, Barnett C (1991) Fasting gastric pH and its relationship to true hypochlorhydria in humans. Dig Dis Sci 36:866–869. doi:10.1007/BF01297133

    Article  CAS  PubMed  Google Scholar 

  • Freire AC, Basit AW, Choudhary R, Piong CW, Merchant HA (2011) Does sex matter? The influence of gender on gastrointestinal physiology and drug delivery. Int J Pharm 415:15–28. doi:10.1016/j.ijpharm.2011.04.069

    Article  CAS  PubMed  Google Scholar 

  • Gomez A, Luckey D, Taneja V (2015) The gut microbiome in autoimmunity: sex matters. Clin Immunol 159:154–162. doi:10.1016/j.clim.2015.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052. doi:10.1073/pnas.1010529108

    Article  CAS  PubMed Central  Google Scholar 

  • Honigberg BM (1970) Protozoa associated with termites and their role in digestion. In: Krishna K, Weesner FM (eds) Biology of termites, vol II., Academic PressNew York, London, pp 1–36

    Google Scholar 

  • Hu XP, Song D, Gao X (2011) Biological changes in the Eastern subterranean termite, Reticulitermes flavipes (Isoptera, Rhinotermitidae) and its protozoa profile following starvation. Insectes Soc 58:39–45. doi:10.1007/s00040-010-0114-1

    Article  Google Scholar 

  • Kirby H (1937) Host-parasite relations in the distribution of protozoa in termites. Univ Calif Publ Zool 41:189–211

    Google Scholar 

  • Kirchner WH, Minkley N (2003) Nestmate discrimination in the harvester termite Hodotermes mossambicus. Insectes Soc 50:222–225. doi:10.1007/s00040-003-0667-3

    Article  Google Scholar 

  • Kitade O (2007) Characteristics and host-symbiont relationships of termite gut flagellates. Jpn J Protozool 40:101–112

    Google Scholar 

  • Lewis JL, Forschler BT (2004) Protist communities from four castes and three species of Reticulitermes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 97:1242–1251. doi:10.1603/0013-8746(2004)097[1242:pcffca]2.0.co;2

  • Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788. doi:10.1038/nrmicro1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Pinto M, Varrica G, Agrò A (2016) Temporal variations in symbiotic hindgut protist community of the subterranean termite Reticulitermes lucifugus Rossi in Sicily. Insectes Soc 63:1–12. doi:10.1007/s00040-015-0449-8

    Article  Google Scholar 

  • Markle JGM, Frank DN, Mortin-toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088. doi:10.1126/science.1233521

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K (2001) Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26

    Article  Google Scholar 

  • Matsuura K (2006) A novel hypothesis for the origin of the sexual division of labor in termites: which sex should be soldiers? Evol Ecol 20:565–574. doi:10.1007/s10682-006-9117-9

    Article  Google Scholar 

  • Menasria T, Moussa F, El-Hamza S, Tine S, Megri R, Chenchouni H (2014) Bacterial load of German cockroach (Blattella germanica) found in hospital environment. Pathog Glob Health 108:141–147. doi:10.1179/2047773214Y.0000000136

    Article  PubMed  PubMed Central  Google Scholar 

  • Minkley N, Fujita A, Brune A, Kirchner WH (2006) Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insectes Soc 53:339–344. doi:10.1007/s00040-006-0878-5

    Article  Google Scholar 

  • Mitaka Y, Kobayashi K, Mikheyev A, Tin MMY, Watanabe Y, Matsuura K (2016) Caste-specific and sex-specific expression of chemoreceptor genes in a termite. PLoS One 11:e0146125. doi:10.1371/journal.pone.0146125

    Article  PubMed  PubMed Central  Google Scholar 

  • Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Luigi F, Henrissat B, Knight R, Gordon JI (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970–974. doi:10.1126/science.1198719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nutting WL (1956) Reciprocal protozoan transfaunations between the roach, Cryptocercus, and the termite, Zootermopsis. Biol Bull 110:83–90

    Article  Google Scholar 

  • Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignel DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438

    Google Scholar 

  • Prewett EJ, Smith JTL, Nwokolo AM, Sawyerr AM, Pounder RE (1991) Twenty-four hour intragastric acidity and plasma gastrin concentration profiles in female and male subjects. Clin Sci 80:619–624

    Article  CAS  PubMed  Google Scholar 

  • Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS ONE 7:1–10. doi:10.1371/journal.pone.0030768

    Google Scholar 

  • Restif O, Amos W (2010) The evolution of sex-specific immune defences. Proc R Soc Lond B 277:2247–2255. doi:10.1098/rspb.2010.0188

    Article  Google Scholar 

  • Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C (2010) Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–1355. doi:10.1126/science.1190689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roisin Y, Korb A (2011) Social organisation and the status of workers in termites. In: Bignel DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 133–164

    Google Scholar 

  • Schomburg L, Stoedter M, Renko K, Hög A, Schomburg L (2010) Selenium controls the sex-specific immune response and selenoprotein expression during the acute-phase response in mice. Biochem J 429:43–51. doi:10.1042/BJ20091868

    Article  PubMed  Google Scholar 

  • Shastri P, McCarville J, Kalmokoff M, Brooks SPJ, Green-Johnson JM (2015) Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet. Biol Sex Differ 6:13. doi:10.1186/s13293-015-0031-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimada K, Lo N, Kitade O, Wakui A, Maekawa K (2013) Cellulolytic protist numbers rise and fall dramatically in termite queens and kings during colony foundation. Eukaryot Cell 12:545–550. doi:10.1128/EC.00286-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674. doi:10.1126/science.1212782

    Article  CAS  PubMed  Google Scholar 

  • Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14:403–414. doi:10.1016/j.cmet.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  • Su NY, La Fage JP (1987) Initiation of worker-soldier trophallaxis by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Insectes Soc 34:229–235. doi:10.1007/BF02224355

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Toga K, Hanmoto S, Suzuki R, Watanabe D, Miura T, Maekawa K (2016) Sexual difference in juvenile-hormone titer in workers leads to sex-biased soldier differentiation in termites. J Insect Physiol 87:63–70. doi:10.1016/j.jinsphys.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka I, Sasabe K, Terada K (1986) A timely infection of intestinal protozoa in developing hindgut of the termite (Reticulitermes speratus). Zoolog Sci 3:175–180

    Google Scholar 

  • Zimet M, Stuart A (1982) Sexual dimorphism in the immature stages of the termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 7:1–7

    Google Scholar 

Download references

Acknowledgments

We thank S. Dobata and K. Kobayashi for helpful comments and T. Yashiro for termite photographs. This work was supported by Japan Society for the Promotion of Science (https://www.jsps.go.jp/english/index.html, No. 25221206 to KM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Inagaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 85 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inagaki, T., Matsuura, K. Colony-dependent sex differences in protozoan communities of the lower termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Ecol Res 31, 749–755 (2016). https://doi.org/10.1007/s11284-016-1387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-016-1387-2

Keywords

Navigation