Skip to main content
Log in

The effect of airplane noise on frogs: a case study on the Critically Endangered Pickersgill’s reed frog (Hyperolius pickersgilli)

  • Original Article
  • Published:
Ecological Research

Abstract

Species communicating acoustically may develop behavioral responses that aid them to transmit information and overcome signal masking in habitats disturbed by anthropogenic noise. Although many studies have concentrated on road traffic noise, very few studies mentioned effects of low flying airplane flyby noise on the vocal behavior of frogs. We studied the Critically Endangered Pickersgill’s Reed frog (Hyperolius pickersgilli) native to the eastern coastal regions of South Africa as a case study. In order to evaluate the call of H. pickersgilli, we compared a site with high levels of airplane flyby noise to a reference site without any airplane activity. Our results show that H. pickersgilli males made changes in both temporal and spectral properties of their call. Males call significantly more during and after an airplane flyby in relation to the call rate before the noise stimulus, but resumed normal call rhythms when measurements were taken 15 min after overflight. We found that males call at higher mean dominant frequencies (df difference = 161.4 Hz, P < 0.05) when exposed to high-intensity airplane flyby noise. In comparison with call rate 5 min before the airplane flyby, males called 12 % more during and 18 % more after the airplane flyby. Although changes in the spectral and temporal properties of the call of H. pickersgilli were observed, this species was actively calling for much longer than any other local species. This is the first study from Africa to report effects of anthropogenic noise on anuran communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arch VS, Grafe TU, Gridi-Papp M, Narins PM (2009) Pure ultrasonic communication in an endemic Bornean frog. PLoS One. doi:10.1371/journal.pone.0005413

    PubMed  PubMed Central  Google Scholar 

  • Barber JR, Crooks KR, Fristrup KM (2009a) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25:180–189. doi:10.1016/j.tree.2009.08.002

    Article  PubMed  Google Scholar 

  • Barber JR, Fristrup KM, Brown CL, Hardy AR, Angeloni LM, Crooks KR (2009b) Conserving the wild life therein: protecting park fauna from anthropogenic noise. Park Sci 26:26–31

    Google Scholar 

  • Bee MA (2012) Sound source perception in anuran amphibians. Curr Opin Neurobiol 22:301–310. doi:10.1016/j.conb.2011.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bee MA, Swanson EM (2007) Auditory masking of anuran advertisement calls by road traffic noise. Anim Behav 74:1765–1776. doi:10.1016/j.anbehav.2007.03.019

    Article  Google Scholar 

  • Blair WF (1974) Character displacement in frogs. Amer Zool 14:1119–1125

    Article  Google Scholar 

  • Boeckle M, Preininger D, Hödl W (2009) Communication in noisy environments I: acoustic signals of Staurois latopalmatus Boulenger 1887. Herpetologica 65:154–165. doi:10.1655/07-071R1.1

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sunderland (MA), Sinauer Associates

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209. doi:10.1016/S0065-3454(05)35004-2

    Article  Google Scholar 

  • Bucher TL, Ryan MJ, Bartholomew GA (1982) Oxygen consumption during resting, calling, and nest building in the frog Physalaemus pustulosus. Physiol Zool 55:10–22

    Article  Google Scholar 

  • Bulman CR, Wilson RJ, Holt AR, Bravo LG, Early RI, Warren MS, Thomas CD (2007) Minimum viable metapopulation size, extinction debt, and the conservation of declining species. Ecol Appl 17:1460–1473. doi:10.1890/06-1032.1

    Article  PubMed  Google Scholar 

  • Carr LW, Fahrig L (2001) Effect of road traffic on two amphibian species of different vagility. Conserv Biol 15:1071–1078. doi:10.1046/j.1523-1739.2001.0150041071.x

    Article  Google Scholar 

  • SPSS IBM Corp (2013) IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp

  • Cunnington GC, Fahrig L (2010) Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologia 36:463–470. doi:10.1016/j.actao.2010.06.002

    Article  Google Scholar 

  • Dowling JL, Luther DA, Marra PP (2012) Comparative effects of urban development and anthropogenic noise on bird songs. Behav Ecol 23:201–209. doi:10.1093/beheco/arr176

    Article  Google Scholar 

  • Drewry GE, Rand AS (1983) Characteristics of an acoustic community: puerto Rican frogs of the genus Eleutherodactylus. Copeia 1983:941–953. doi:10.1046/j.1461-0248.2003.00420.x

    Article  Google Scholar 

  • Du Preez L, Carruthers V (2009) A complete guide to the frogs of Southern Africa. Struik Nat, Cape Town

    Google Scholar 

  • Eigenbrod F, Hecnar SJ, Fahrig L (2009) Quantifying the road effect zone: threshold effects of a motorway on anuran populations in Ontario, Canada. Ecol Soc 14:24. http://www.ecologyandsociety.org/vol14/iss1/art24/

  • Emerson SB (2001) Male advertisement calls: behavioral variation and physiological processes. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington, pp 36–44

    Google Scholar 

  • Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14:21. http://www.ecologyandsociety.org/vol14/iss1/art21/

  • Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Integr Comp Biol 34:644–654. doi:10.1093/icb/34.6.644

    Google Scholar 

  • Garcia-Rutledge E, Narins PM (2001) Shared acoustic resources in an old world frog community. Herpetologica 57:103–116

    Google Scholar 

  • Gerhardt HC (1982) Sound pattern recognition in some North American treefrogs (Anura: hylidae): implications for mate choice. Amer Zool 22:581–595. doi:10.1093/icb/22.3.581

    Article  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago

    Google Scholar 

  • Gerhardt HC, Schwartz JJ (1995) Interspecific interactions in anuran courtship. In: Heatwole H, Sullivan BK (eds) Social behaviour: amphibian biology, vol 2. Surrey Beatty and Sons, Chipping Norton, pp 603–632

    Google Scholar 

  • Grafe U (1997) Costs and benefits of mate choice in the lek-breeding reed frog, Hyperolius marmoratus. Anim Behav 53:1103–1117. doi:10.1006/anbe.1996.0427

    Article  Google Scholar 

  • Hauser MD (1996) The evolution of communication. MIT Press, Cambridge

    Google Scholar 

  • Herrera-Montes MI, Aide TM (2011) Impacts of traffic noise on anuran and bird communities. Urban Ecosyst 14:415–427. doi:10.1007/s11252-011-0158-7

    Article  Google Scholar 

  • Hoskin CJ (2004) Australian microhylid frogs (Cophixalus and Austrochaperina): phylogeny, taxonomy, calls, distribution and breeding biology. Aust J Zool 52:237–269. doi:10.1111/cla.12118

    Article  Google Scholar 

  • Hoskin CJ, Goosem MW (2010) Road impacts on abundance, call traits, and body size of rainforest frogs in northeast Australia. Ecol Soc 15:15. http://www.ecologyandsociety.org/vol15/iss3/art15/

  • Hoskin CJ, Higgie M, Mcdonald KR, Moritz C (2005) Reinforcement drives rapid allopatric speciation. Nature 437:1353–1356. doi:10.1038/nature04004

    Article  CAS  PubMed  Google Scholar 

  • Hoskin CJ, James S, Grigg GC (2009) Ecology and taxonomy-driven deviations in the frog call-body size relationship across the diverse Australian frog fauna. J Zool 278:36–41. doi:10.1111/j.1469-7998.2009.00550.x

    Article  Google Scholar 

  • IUCN (2014) IUCN Red List of Threatened Species. Version 2014.2. www.iucnredlist.org. Accessed 6 March 2015

  • Kaiser K, Hammers JL (2009) The effect of anthropogenic noise on male advertisement call rate in the neotropical treefrog, Dendropsophus triangulum. Behaviour 146:1053–1069. doi:10.1163/156853909X404457

    Article  Google Scholar 

  • Kaiser K, Scofield DG, Alloush M, Jones RM, Marczak S, Martineau K, Oliva MK, Narins PM (2010) When sounds collide: the effect of anthropogenic noise on a breeding assemblage of frogs in Belize, Central America. Behaviour 148:215–232. doi:10.1163/000579510X551660

    Article  Google Scholar 

  • Krause B (2004) The effect of low-level jet overflights on the natural soundscape. Presented at Natural soundscapes and noisy humans: a tale of two canyons. Palm Springs, California, Session IX, 3 March

  • Landon DM, Krausman PR, Koenen KKG, Harris LK (2003) Pronghorn use of areas with varying sound pressure levels. Southwest Nat 48:725–728. doi:10.1894/0038-4909(2003)048<0725:PUOAWV>2.0.CO;2

    Article  Google Scholar 

  • Langemann U, Klump GM (2005) Perception and acoustic communication networks. In: McGregor PK (ed) Animal. Communication Networks Cambridge University Press, Cambridge, pp 451–480

    Google Scholar 

  • Lemckert F, Penman T, Mahony M (2013) Relationship of calling intensity to micrometeorology in pond breeding frogs from central eastern New South Wales. Proc Int Acad Ecol Environ Sci 3:170–180

    Google Scholar 

  • Lengagne T (2008) Traffic noise affects communication behaviour in a breeding anuran, Hyla arborea. Biol Conserv 141:2023–2031. doi:10.1016/j.biocon.2008.05.017

    Article  Google Scholar 

  • Love EK, Bee MA (2010) An experimental test of noise-dependent voice amplitude regulation in Cope’s grey treefrog, Hyla chrysoscelis. Anim Behav 80:509–515. doi:10.1016/j.anbehav.2010.05.031

    Article  PubMed  PubMed Central  Google Scholar 

  • Mac Nally RC (1981) On the reproductive energetics of chorusing males: energy depletion profiles, restoration and growth in two sympatric species of Ranidella (Anura). Oecologia 51:181–188. doi:10.1007/BF00540598

    Article  Google Scholar 

  • Melcón ML, Cummins AJ, Kerosky SM, Roche LK, Wiggins SM, Hildebrand JA (2012) Blue whales respond to anthropogenic noise. PLoS One 7:e32681. doi:10.1371/journal.pone.0032681

    Article  PubMed  PubMed Central  Google Scholar 

  • Michelsen A (1978) Sound reception in different environments. In: Ali MA (ed) Sensory ecology: review and perspectives. Plenum, New York, pp 345–373

    Chapter  Google Scholar 

  • Narins PM (1982) Effects of masking noise on evoked calling in the Puerto Rican coqui (Anura: Leptodactylidae). J Comp Physiol 147:439–446. doi:10.1007/BF00612008

    Article  Google Scholar 

  • NEMBA (2004) National Environmental Management Biodiversity Act 2004, Act No. 10 of 2004. Government Gazette, Cape Town

  • Parris KM, McCarthy MA (2013) Predicting the effect of urban noise on the active space of avian vocal signals. Am Nat 182:452–464

    Article  PubMed  Google Scholar 

  • Parris KM, Schneider A (2009) Impacts of traffic noise and traffic volume on birds in roadside habitats. Ecol Soc 14:29. http://www.ecologyandsociety.org/vol14/iss1/art29/

  • Parris KM, Velik-Lord M, North JMA (2009) Frogs call at a higher pitch in traffic noise. Ecol Soc 14:25. http://www.ecologyandsociety.org/vol14/iss1/art25/

  • Penna M, Narins PM, Feng AS (2005) Thresholds for evoked vocal responses of Eupsophus emiliopugini (Amphibia, Leptodactylidae). Herpetologica 61:1–8. doi:10.1655/04-21

    Article  Google Scholar 

  • Pepper CB, Nascarella MA, Kendall RJ (2003) A review of the effects of aircraft noise on wildlife and humans, current control mechanisms, and the need for further study. Environ Manage 32:418–432. doi:10.1007/s00267-003-3024-4

    Article  PubMed  Google Scholar 

  • Popper AN, Hastings MC (2009) The effects of anthropogenic sources of sound on fishes. J Fish Biol 75:455–489. doi:10.1111/j.1095-8649.2009.02319.x

    Article  CAS  PubMed  Google Scholar 

  • Pough FH, Magnusson WE, Ryan MJ, Wells KD, Taigen TL (1992) Behavioral energetics. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. University of Chicago Press, Chicago, pp 395–436

    Google Scholar 

  • Prestwich KN, Brugger KE, Topping MJ (1989) Energy and communication in three species of hylid frogs: power input, power output and efficiency. J Exp Biol 144:53–80

    Google Scholar 

  • Rand AS (1985) Trade-offs in the evolution of frog calls. Proc Anim Sci 94:623–637. doi:10.1007/BF03191864

    Article  Google Scholar 

  • Raw LRG (1982) A new species of reed frog (Amphibia: Hyperoliidae) from the coastal lowlands of Natal, South Africa. Durban Mus Novit 13:117–126

    Google Scholar 

  • Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. Amer Nat 115:381–399. doi:10.1086/283568

    Article  Google Scholar 

  • Schwartz JJ, Bee MA (2013) Anuran acoustic signal production in noisy environments. In: Brumm H (ed) Animal communication and noise, vol 2. Springer, New York, pp 91–132

    Chapter  Google Scholar 

  • Schwartz JJ, Gerhardt HC (1995) Directionality of the auditory system and call pattern recognition during acoustic interference in the gray treefrog, Hyla versicolor. Auditory Neurosci 1:195–206

    Google Scholar 

  • Sun JWC, Narins PM (2005) Anthropogenic sounds differentially affect amphibian call rate. Biol Conserv 121:419–427. doi:10.1016/j.biocon.2004.05.017

    Article  Google Scholar 

  • Taigen TL, Wells KD (1985) Energetics of vocalization by an anuran amphibian (Hyla versicolor). J Comp Physiol B 155:163–170. doi:10.1007/BF00685209

    Article  Google Scholar 

  • Taigen TL, Wells KD, Marsh RL (1985) The enzymatic basis of high metabolic rates in calling frogs. Physiol Zool 58:719–726. doi:10.1086/637593

    Article  CAS  Google Scholar 

  • Tarrant J (2012) Tapping into frog conservation: a new programme for the Endangered Wildlife Trust. African Herp News 58:1–3

    Google Scholar 

  • Tarrant J, Armstrong AJ (2013) Using predictive modelling to guide the conservation of a critically endangered coastal wetland amphibian. J Nat Conserv 21:369–381. doi:10.1080/00063657.2013.849656

    Article  Google Scholar 

  • Vargas-Salinas F, Amézquita A (2013) Traffic noise correlates with calling time but not spatial distribution in the threatened poison frog Andinobates bombetes. Behaviour 150:569–584. doi:10.1163/1568539X-00003068

    Article  Google Scholar 

  • Vargas-Salinas F, Cunnington GM, Amézquita A, Fahrig L (2014) Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada. Urban Ecosyst 17:945–953. doi:10.1007/s11252-014-0374-z

    Article  Google Scholar 

  • Vélez A, Schwartz JJ, Bee MA (2013) Anuran acoustic signal perception in noisy environments. In: Brumm H (ed) Animal communication and noise, vol 2. Springer, New York, pp 133–185

    Chapter  Google Scholar 

  • Wells KD (2007) Ecology and behavior of amphibians. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Wells KD, Taigen TL (1989) Calling energetics of a Neotropical treefrog, Hyla microcephala. Behav Ecol Sociobiol 25:13–22. doi:10.1007/BF00299706

    Article  Google Scholar 

  • Wiley RH (1994) Errors, exaggeration, and deception in animal communication. In: Real LA (ed) behavioral mechanisms in evolutionary ecology. University of Chicago Press, Chicago, pp 157–189

    Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94. doi:10.1007/BF00300047

    Article  Google Scholar 

  • Wiley RH, Richards DG (1982) Adaptation for acoustic communication in birds: sound transmission and detection. In: Kroodsma DE, Miller EH (eds) acoustic communication in birds, vol 1. Academic Press, New York, pp 132–181

    Google Scholar 

  • Wilkens MR, Seddon N, Saffran RJ (2013) Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol Evol 28:156–166. doi:10.1016/j.tree.2012.10.002

    Article  Google Scholar 

  • Wollerman L (1999) Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata. Anim Behav 57:529–536. doi:10.1007/s11692-014-9274-7

    Article  PubMed  Google Scholar 

  • Wollerman L, Wiley RH (2002) Background noise from a natural chorus alters female discrimination of male calls in a Neotropical frog. Anim Behav 63:15–22. doi:10.1093/beheco/art125

    Article  Google Scholar 

  • Ziegler L, Arim M, Narins PM (2011) Linking amphibian call structure to the environment: the interplay between phenotypic flexibility and individual attributes. Behav Ecol 22:520–526

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The National Research Foundation provided financial support to DJDK for two years of this study (Grant UID: 84458). Accommodation, transport and selected sound equipment were funded by Stiftung Artenschutz. Jeanne Tarrant, Les Minter, John Malone and Kirsten Parris are thanked for valuable comments on earlier drafts of this manuscript. All appropriate ethics and other approvals for this research were obtained from the North-West University Ethics Committee (Ref. NWU-00075-13-A3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donnavan J. D. Kruger.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruger, D.J.D., Du Preez, L.H. The effect of airplane noise on frogs: a case study on the Critically Endangered Pickersgill’s reed frog (Hyperolius pickersgilli). Ecol Res 31, 393–405 (2016). https://doi.org/10.1007/s11284-016-1349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-016-1349-8

Keywords

Navigation