Skip to main content
Log in

Predicting patterns of intentional introduction of non-native largemouth bass into farm ponds in northeastern Japan

  • Original Article
  • Published:
Ecological Research

Abstract

Non-native species are difficult to eradicate or control once established. Thus, the prevention of invasions is a high priority for conserving native ecosystems. Our objective was to determine the factors that influence illegal introductions of non-native largemouth bass (Micropterus salmoides) and to develop a model that could be used to predict the pattern of future illegal introduction by anglers. We used generalized linear modeling (GLM) to evaluate the relationship between landscape and environmental factors and the presence of bass in farm ponds. Our results suggest that the occurrence of bass was primarily associated with pond size, distance of ponds from the urban center, and the proportion of the pond shoreline covered with a concrete revetment. We conclude that introductions occurred in ponds that were: easier to locate on a map, closer to anglers’ residential areas, and more easily accessible to the pond shore. Last, we suggest our predictive model could be used for preventive measures, such as identifying other ponds most at risk of future illegal introduction of non-native bass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abekura K, Hori M, Takemon Y (2004) Changes in fish community after invasion and during control of alien fish population in Mizoro-ga-ike, Kyoto city. Glob Environ Res 8:145–154

    Google Scholar 

  • Alcaraz C, Vila-Gispert A, Garcia-Berthou E (2005) Profiling invasive fish species: the importance of phylogeny and human use. Divers Distrib 11:289–298. doi:10.1111/j.1366-9516.2005.00170.x

    Article  Google Scholar 

  • Bahn V, McGill BJ (2013) Testing the predictive performance of distribution models. Oikos 122:321–332. doi:10.1111/j.1600-0706.2012.00299.x

    Article  Google Scholar 

  • Barton K (2011) MuMIn: multi-model inference version 1.9.13. http://CRAN.R-project.org/package=MuMIn. Accessed 20 February 2014

  • Buchan LAJ, Padilla DK (1999) Estimating the probability of long-distance overland dispersal of invading aquatic species. Ecol Appl 9:254–265. doi:10.1890/1051-0761(1999)009[0254:ETPOLD]2.0.CO;2

    Article  Google Scholar 

  • Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE (2001) Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71:163–186. doi:10.1890/0012-9615(2001)071[0163:TCNALP]2.0.CO;2

  • Carpenter SR, Cole JJ, Kitchell JF, Pace ML (2009) Trophic cascades in lakes: lessons and prospects. In: Terborgh J, Estes JA (eds) Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington DC, pp 55–69

    Google Scholar 

  • Clavero M, Garcia-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trens Ecol Evol 20:110. doi:10.1016/j.tree.2005.01.003

    Article  Google Scholar 

  • Copp GH, Wsley KJ, Vilizzi L (2005) Pathways of ornamental and aquarium fish introductions into urban ponds of Epping Forest (London, England): the human vector. J Appl Ichthyol 21:263–274. doi:10.1111/j.1439-0426.2005.00673.x

    Article  Google Scholar 

  • Crawly MJ (2005) Statistics: an introduction using R. Wiley, London

    Book  Google Scholar 

  • Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol Biogeogr 16:129–138. doi:10.1111/j.1466-8238.2006.00279.x

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kuhn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schroder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628. doi:10.1111/j.2007.0906-7590.05171.x

    Article  Google Scholar 

  • Drake JM, Bossenbroek JM (2004) The potential distribution of zebra mussels in the United States. Bioscience 54:931–941. doi:10.1641/0006-3568(2004)054[0931:TPDOZM]2.0.CO;2

    Article  Google Scholar 

  • Eby LA, Roach WJ, Crowder LB, Stanford JA (2006) Effects of stocking-up freshwater food webs. Trends Ecol Evol 21:576–584. doi:10.1016/j.tree.2006.06.016

    Article  PubMed  Google Scholar 

  • Giovanelli JGR, Haddad CFB, Alexandrino J (2008) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol Invasions 10:585–590. doi:10.1007/s10530-007-9154-5

    Article  Google Scholar 

  • Hecky RE, Mugidde R, Ramlal PS, Talbot MR, Kling GW (2010) Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshw Biol 55(Suppl 1):19–24. doi:10.1111/j.1365-2427.2009.02374.x

    Article  Google Scholar 

  • Herborg L-M, Jerde CL, Lodge DM, Ruiz GM, MacIsaac HJ (2007) Predicting invasion risk using measures of introduction effort and environmental niche model. Ecol Appl 17:663–674. doi:10.1890/06-0239

    Article  PubMed  Google Scholar 

  • Hickley P, Chare S (2004) Fisheries for non-native species in England and Wales: angling or the environment? Fish Manag Ecol 11:203–212. doi:10.1111/j.1365-2400.2004.00395.x

    Article  Google Scholar 

  • Iguchi K, Matsuura K, McNyset KM, Peterson AT, Scachetti-Pereira R, Powers KA, Vieglais D, Wiley EO, Yodo T (2004) Predicting invasions of North American basses in Japan using native range data and a genetic algorithm. Trans Am Fish Soc 133:845–854. doi:10.1577/T03-172.1

    Article  Google Scholar 

  • IUCN/SSC Invasive Species Specialist Group (2002) IUCN guidelines for the prevention of biodiversity loss caused by alien invasive species. IUCN/SSC Invasive Species Specialist Group. http://www.issg.org/pdf/guidelines_iucn.pdf. Accessed 20 February 2014

  • Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities—the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58:157–170. doi:10.1139/f00-239

    Google Scholar 

  • Katano O (2012) What should be done not to expand the distribution of invasive alien fish (in Japanese). Nippon Suisan Gakkaishi 78:997–1000

    Article  Google Scholar 

  • Katano O, Hosoya K, Iguchi K, Yamaguchi M, Aonuma Y, Kitano S (2003) Species diversity and abundance of freshwater fishes in irrigation ditches around rice fields. Environ Biol Fish 66:107–121. doi:10.1023/A:1023678401886

    Article  Google Scholar 

  • Katoh K, Sakai S, Takahashi T (2009) Factors maintaining species diversity in satoyama, a traditional agricultural landscape of Japan. Biol Conserv 142:1930–1936. doi:10.1016/j.biocon.2009.02.030

    Article  Google Scholar 

  • Kaufman SD, Snucins E, Gunn JM, Selinger W (2009) Impacts of road access on lake trout (Salvelinus namaycush) populations: regional scale effects of overexploitation and the introduction of smallmouth bass (Micropterus dolomieu). Can J Fish Aquat Sci 66:212–233. doi:10.1139/F08-205

    Article  Google Scholar 

  • Kraft CE, Johnson LE (2000) Regional differences in rates and patterns of North American inland lake invasions by zebra mussels (Dreissena polymorpha). Can J Fish Aquat Sci 57:993–1001. doi:10.1139/f00-037

    Article  Google Scholar 

  • Lane SJ, Fujioka M (1998) The impact of changes in irrigation practices on the distribution of foraging egrets and herons (Ardeidae) in the rice fields of central Japan. Biol Conserv 83:221–230. doi:10.1016/S0006-3207(97)00054-2

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673. doi:10.2307/1939924

    Article  Google Scholar 

  • Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S (2008) Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biol 6:e28. doi:10.1371/journal.pbio.0060322

    Article  PubMed Central  PubMed  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2013) Invasion Ecol, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Maezono Y, Miyashita T (2003) Community-level impacts induced by introduced largemouth bass and bluegill in farm ponds in Japan. Biol Conserv 109:111–121. doi:10.1016/S0006-3207(02)00144-1

    Article  Google Scholar 

  • Maezono Y, Kobayashi R, Kusahara M, Miyashita T (2005) Direct and indirect effects of exotic bass and bluegill on exotic and native organisms in farm ponds. Ecol Appl 15:638–650. doi:10.1890/02-5386

    Article  Google Scholar 

  • McNeill AJ (1995) An overview of the smallmouth bass in Nova Scotia. Nor Am J Fish Manage 15:680–687. doi:10.1577/1548-8675(1995)015<0680:AOOTSB>2.3.CO;2

    Article  Google Scholar 

  • Meador MR, Brown LR, Short T (2003) Relations between fish and environmental conditions at large geographic scales. Ecol Indicat 3:81–92. doi:10.1007/s00267-002-2805-5

    Article  CAS  Google Scholar 

  • Menke SB, Holway DA, Fisher RN, Jetz W (2009) Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder. Global Ecol Biogeogr 18:50–63. doi:10.1111/j.1466-8238.2008.00420.x

    Article  Google Scholar 

  • Mitsuo Y, Ohira M, Tsunoda H, Shono Y, Senga Y (2010) The fish fauna of farm ponds in northeastern Japan and its contribution to the maintenance of regional fish diversity. J Environ Info Sci 38:89–96

    Google Scholar 

  • Mitsuo Y, Tsunoda H, Takiguchi A, Senga Y (2011) Environmental influences on fish assemblages in irrigation ponds. Aquat Ecol 45:473–482. doi:10.1007/s10452-011-9368-6

    Article  CAS  Google Scholar 

  • Mitsuo Y, Tsunoda H, Kozawa G, Yuma M (2014) Response of the fish assemblage structure in a small farm pond to management dredging operations. Agr Ecosyst Environ 188:93–96. doi:10.1016/j.agee.2014.02.015

    Article  Google Scholar 

  • Moyle PB, Marchetti MP (2006) Predicting invasion success: freshwater fishes in California as a model. Bioscience 56:515–524. doi:10.1641/0006-3568(2006)56[515:PISFFI]2.0.CO;2

    Article  Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371. doi:10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2

    Article  Google Scholar 

  • Power ME, Matthews WJ, Stewart AJ (1985) Grazing minnows, piscivorous bass and stream algae: dynamics of a strong interaction. Ecology 66:1448–1456. doi:10.2307/1938007

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rahel FJ (1984) Factors structuring fish assemblages along a bog lake successional gradient. Ecology 65:1276–1289. doi:10.2307/1938333

    Article  Google Scholar 

  • Rahel FJ (2000) Homogenization of fish faunas across the United States. Science 288:854–856. doi:10.1126/science.288.5467.854

    Article  CAS  PubMed  Google Scholar 

  • Rahel FJ (2002) Homogenization of freshwater faunas. Annu Rev Ecol Syst 33:291–315. doi:10.1146/annurev.ecolsys.33.010802.150429

    Article  Google Scholar 

  • Record S, Fitzpatrick MC, Finley AO, Veloz S, Ellison AM (2013) Should species distribution models account for spatial autocorrelation? A test of model projections across eight millennia of climate change. Global Ecol Biogeogr 22:760–771. doi:10.1111/geb.12017

    Article  Google Scholar 

  • Reed-Andersen R, Carpenters SR, Padilla DK, Lathrop RC (2000) Predicted impact of zebra mussel (Dreissena polymorpha) invasion on water clarity in lake Mendota. Can J Fish Aquat Sci 57:1617–1626. doi:10.1139/f00-094

    Article  CAS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kawaguchi Y, Yamanaka H, Okunuma T, Nakajima J, Mitani Y, Shimatani Y, Mukai T, Onikura N (2010) Predicting the spatial distribution of the invasive piscivorous chub (Opsariichthys uncirostris uncirostris) in the irrigation ditches of Kyusyu, Japan: a tool for the risk management of biological invasions. Biol Invasions 12:3677–3686. doi:10.1007/s10530-010-9762-3

    Article  Google Scholar 

  • Sharma S, Herborg L-M, Therriault TW (2009) Predicting introduction, establishment and potential impacts of smallmouth bass. Divers Distrib 15:831–840. doi:10.1111/j.1472-4642.2009.00585.x

    Article  Google Scholar 

  • Sokal RR, Oden NL (1978) Spatial autocorrelation in biology I. Methodology. Biol J Linn Soc 10:627–632. doi:10.1111/j.1095-8312.1978.tb00013.x

    Google Scholar 

  • Sondergaard M, Jeppesen E, Berg S (1997) Pike (Esox lucius) stocking as a biomanipulation tool 2. effects on lower trophic levels in Lake Lyng, Denmark. Hydrobiologia 342(343):319–325. doi:10.1023/A:1017084600712

    Article  Google Scholar 

  • Stuber RJ, Gebhart G, Maughan OE (1982) Habitat suitability index models: largemouth bass. US Department and Institutes of Fish and Wildlife Services, Washington DC

  • Takamura N (2012) The status of biodiversity loss in lakes and ponds in Japan. In: Nakano S, Yahara T, Nakashizuka T (eds) Biodiversity observation network in Asia-Pacific region: towards further development of monitoring activities. Springer, Tokyo, pp 133–148

    Chapter  Google Scholar 

  • Tonn WM, Magnuson JJ (1982) Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63:1149–1166. doi:10.2307/1937251

    Article  Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30. doi:10.1046/j.1523-1739.2000.99084.x

    Article  Google Scholar 

  • Tsunoda H, Mitsuo Y, Ohira M, Doi M, Senga Y (2010) Change of fish fauna in ponds after eradication of invasive piscivorous largemouth bass, Micropterus salmoides, in north-eastern Japan. Aquat Conserv Mar Freshw Ecosyst 20:710–716. doi:10.1002/aqc.1143

    Article  Google Scholar 

  • Tsunoda H, Mitsuo Y, Senga Y (2011) Illegal stocking of introduced largemouth bass: case studies of irrigation ponds in Oshu city, Iwate Prefecture (in Japanese with English summary). Jpn J Conserv Ecol 16:243–248

    Google Scholar 

  • Vander Zanden MJ, Olden JD (2008) A management framework for preventing the secondary spread of aquatic invasive species. Can J Fish Aquat Sci 65:1512–1522. doi:10.1139/F08-099

    Article  Google Scholar 

  • Vander Zanden MJ, Olden JD, Thorne JH, Mandrak NE (2004) Predicting occurrences and impacts of smallmouth bass introductions in north temperate lakes. Ecol Appl 14:132–148. doi:10.1890/02-5036

    Article  Google Scholar 

  • Watanabe T, Asari T (2011) Initiatives and evaluations for conservation of environment in Isawa-nanbu land consolidation project (in Japanese). Water Land Environ Eng 79:691–694

    Google Scholar 

  • Welcomme RL (1992) A history of international introductions of inland aquatic species. ICES J Mar Sci 194:3–14

    Google Scholar 

  • Wheeler A (1998) Ponds and fishes in Epping Forest, Essex. Lond Nat 77:107–146

    Google Scholar 

  • Whittier TR, Kincaid TM (1999) Introduced fish in northeastern USA lakes: regional extent, dominance and effects on native species richness. Trans Am Fish Soc 128:769–783. doi:10.1577/1548-8659(1999)128<0769:IFINUL>2.0.CO;2

    Article  Google Scholar 

  • Yamanaka H, Kohmatsu Y, Yuma M (2007) Difference in the hypoxia tolerance of the round crucian carp and largemouth bass: implications for physiological refugia in the macrophyte zone. Ichthyol Res 54:308–312. doi:10.1007/s10228-006-0400-0

    Article  Google Scholar 

  • Yodo T, Iguchi K (2004) A review on the black bass problem referring to the historical background in Japan (in Japanese with English summary). Bull Fish Res Agency 12:10–24

    Google Scholar 

  • Yonekura R, Kita M, Yuma M (2004) Species diversity in native fish community in Japan: comparison between non-invaded and invaded ponds by exotic fish. Ichthyol Res 51:176–179. doi:10.1007/s10228-003-0200-8

    Article  Google Scholar 

  • Zengeya TA, Robertson MP, Booth AJ, Chimimba CT (2013) A qualitative ecological risk assessment of the invasive Nile tilapia, Oreochromis niloticus in a sub-tropical African river system (Limpopo River, South Africa). Aquat Conserv Mar Freshw Ecosyst 23:51–64. doi:10.1002/aqc.2258

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the students of the Faculty of Agriculture, Tokyo University of Agriculture and Technology, for helping with the field surveys and Oshu City administrators for their cooperation. We also thank the editor and two anonymous reviewers for their thoughtful comments. This study was supported by JSPS KAKENHI Grant Numbers 20-3522 and 25740049 (for HT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Tsunoda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1218 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsunoda, H., Mitsuo, Y. & Enari, H. Predicting patterns of intentional introduction of non-native largemouth bass into farm ponds in northeastern Japan. Ecol Res 30, 15–24 (2015). https://doi.org/10.1007/s11284-014-1200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1200-z

Keywords

Navigation