Skip to main content
Log in

Soil microarthropods in non-intervention montane spruce forest regenerating after bark-beetle outbreak

  • Original Article
  • Published:
Ecological Research

Abstract

We studied Oribatida and Collembola in an old-growth Norway spruce (Picea abies) forest that suffered a massive bark beetle (Ips typographus) outbreak in the 1990s and gradually decayed. It was left to regenerate naturally without human intervention. There was a high abundance of a few tolerant species and lower numbers of sensitive silvicolous ones. The most dominant species were Tectocepheus velatus, Platynothrus peltifer and Isotomiella minor. Although the details, which determine the identity of successful species, remain unknown, parthenogenesis, high reproduction rate and detrito- or detritofungivorous feeding were the common features of the most dominant species in our study. Trait assessment showed an overall predominance of parthenogenesis and high abundance of detritivorous oribatids. The soil functions connected with Oribatida and Collembola seem to be still affected by the bark-beetle outbreak and our results indicate that the disturbance caused important changes in the functioning of the whole soil ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht J (2003) České Budějovice Region. In: Mackovčin P, Sedláček M (eds) Protected areas of Czech Republic VIII. Agentura ochrany přírody a krajiny ČR a EkoCentrum Brno, Praha

    Google Scholar 

  • Balogh J, Mahunka S (1983) Primitive Oribatids of the Palaearctic region. Akademiai Kiado, Budapest

    Google Scholar 

  • Bouget Ch, Duelli P (2004) The effects of windthrow on forest insect communities: a literature review. Biol Conserv 118:281–299

    Article  Google Scholar 

  • Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659

    Article  PubMed  Google Scholar 

  • Caruso T, Pigino G, Bernini F, Bargagli R, Migliorini M (2007) The Berger-Parker index as an effective tool for monitoring the biodiversity of disturbed soils: a case study on Mediterranean oribatid (Acari: Oribatida) assemblages. Biodivers Conserv 16:3277–3285

    Article  Google Scholar 

  • Chahartaghi M, Langel R, Scheu S, Ruess L (2005) Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biol Biochem 37:1718–1725

    Article  CAS  Google Scholar 

  • Chahartaghi M, Scheu S, Ruess L (2006) Sex ratio and mode of reproduction in Collembola of an oak-beech forest. Pedobiologia 50:331–340

    Article  Google Scholar 

  • Chahartaghi M, Maraun M, Scheu S, Domes K (2009) Resource depletion and colonization: a comparison between parthenogenetic and sexual Collembola species. Pedobiologia 52:181–189

    Article  Google Scholar 

  • Chauvat M, Zaitsev AS, Wolters V (2003) Successional changes of Collembola and soil microbiota during forest rotation. Oecologia 137:269–276

    Article  PubMed  Google Scholar 

  • Chernova NM, Potapov MB, Savenkova YuYu, Bokova AI (2010) Ecological significance of parthenogenesis in Collembola. Entomol Rev 90:23–38

    Article  Google Scholar 

  • Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarology 40:1–25

    Article  Google Scholar 

  • Čuchta P, Miklisová D, Kováč L (2012) A three-year study of soil Collembola communities in spruce forest stands of the High Tatra Mts (Slovakia) after a catastrophic windthrow event. Eur J Soil Biol 50:151–158

    Article  Google Scholar 

  • de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S, de Ruiter PC, d’Hertefeldt H, Frouz J, Hedlund K, Hemerik L, Hol WHG, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across European land use systems. PNAS 110:14296–14301

    Article  PubMed Central  PubMed  Google Scholar 

  • Domes K, Scheu S, Maraun M (2007a) Resources and sex: soil re-colonization by sexual and parthenogenetic oribatid species. Pedobiologia 51:1–11

    Article  Google Scholar 

  • Domes K, Norton RA, Maraun M, Scheu S (2007b) Reevolution of sexuality breaks Dollo’s law. PNAS 104:7139–7144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunger W, Schlitt B (2011) Synopses on Palaearctic Collembola: Tullbergiidae. Soil Org 83:1–168

    Google Scholar 

  • Farská J, Prejzková K, Rusek J (2014) Management intensity affects traits of soil microarthropod community in montane spruce forest. Appl Soil Ecol 75:71–79. doi:10.1016/j.apsoil.2013.11.003 (in press)

    Article  Google Scholar 

  • Fischer BM, Schatz H, Maraun M (2010) Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem. Exp Appl Acarol 52:221–237

    Article  PubMed Central  PubMed  Google Scholar 

  • Fjellberg A (1998) The Collembola of Fennoscandia and Denmark. Part I. Poduromorpha. Fauna Entomol Scand 35:1–184

    Google Scholar 

  • Fjellberg A (2007) The Collembola of Fennoscandia and Denmark. Part II. Entomobryomorpha and Symphypleona. Fauna Entomol Scand 42:1–264

    Google Scholar 

  • Fountain MT, Hopkin SP (2004) Biodiversity of Collembola in urban soils and the use of Folsomia candida to assess soil ‘quality’. Ecotoxicology 13:555–572

    Article  CAS  PubMed  Google Scholar 

  • Frouz J, Keplin B, Pižl V, Tajovský K, Starý J, Lukešová A, Nováková A, Balík V, Háněl L, Materna J, Düker Ch, Chalupský J, Rusek J, Heinkele T (2001) Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol Eng 17:275–284

    Article  Google Scholar 

  • Giljarov MS, Krivolutskij DA (1975) Opredelitel obitajuščich v počve kleščech. Sarcoptiformes (in Russian). Nauka, Moscow

    Google Scholar 

  • Gisin H (1960) Collembolenfauna Europas. Mus Hist Nat, Geneva

    Google Scholar 

  • Griffin JM, Turner MG, Simard M (2011) Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. For Ecol Manag 261:1077–1089

    Article  Google Scholar 

  • Hågvar S (2010) Primary succession of springtails (Collembola) in a Norwegian glacier foreland. Arc Ant Alp Res 42:422–429

    Article  Google Scholar 

  • Hais M, Kučera T (2008) Surface temperature change of spruce forest as a result of bark beetle attack: remote sensing and GIS approach. Eur J Forest Res 127:327–336

    Article  Google Scholar 

  • Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282–290

    Article  Google Scholar 

  • Hojdová M, Hais M, Pokorný J (2005) Microclimate of a peat bog and of the forest in different states of damage in the National Park Šumava. Silva Gabreta 11:13–24

    Google Scholar 

  • Jabin M, Mohr D, Kappes H, Topp W (2004) Influence of deadwood on density of soil macro-arthropods in a managed oak–beech forest. For Ecol Manag 194:61–69

    Article  Google Scholar 

  • Johnston JM, Crossley DA Jr (1993) The significance of coarse woody debris for the diversity of soil mites. In: McMinn JW, Crossley DA Jr (eds) Proceedings of the workshop on coarse woody debris in southern forests: effects on biodiversity. USDA Forest Service, Athens

    Google Scholar 

  • Kaňa J, Tahovská K, Kopáček J (2013) Response of soil chemistry to forest dieback after bark beetle infestation. Biogeochemistry 113:369–383

    Article  Google Scholar 

  • Karasawa S, Hijii N (2008) Vertical stratification of oribatid (Acari: Oribatida) communities in relation to their morphological and life-history traits and tree structures in a subtropical forest in Japan. Ecol Res 23:57–69

    Article  Google Scholar 

  • Kimmins JP (1997) Forest ecology: a foundation for sustainable management. Prentice-Hall Inc., New Jersey

    Google Scholar 

  • Lensing JR, Todd S, Wise DH (2005) The impact of altered precipitation on spatial stratification and activity-densities of springtails (Collembola) and spiders (Araneae). Ecol Entomol 30:194–200

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York

    Google Scholar 

  • Lindberg N, Bengtsson J (2005) Population responses of oribatid mites and collembolans after drought. Appl Soil Ecol 28:163–174

    Article  Google Scholar 

  • Lindberg N, Bengtsson J (2006) Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos 114:494–506

    Article  Google Scholar 

  • Lóšková J, Luptáčik P, Miklisová D, Kováč L (2013) The effect of clear-cutting and wildfire on soil Oribatida (Acari) in windthrown stands of the High Tatra Mountains (Slovakia). Eur J Soil Biol 55:131–138

    Article  Google Scholar 

  • Luptáčik P, Miklisová D, Kováč L (2012) Diversity and community structure of soil Oribatida (Acari) in an arable field with alluvial soils. Eur J Soil Biol 50:97–105

    Article  Google Scholar 

  • Luxton M (1972) Studies on oribatid mites of a Danish beech wood soil I. Nutritional biology. Pedobiologia 12:434–463

    Google Scholar 

  • Luxton M (1981) Studies on the oribatid mites of a Danish beech wood soil. IV. Developmental biology. Pedobiologia 21:312–340

    Google Scholar 

  • Malmström A (2012) Life-history traits predict recovery patterns in Collembola species after fire: a 10 year study. Appl Soil Ecol 56:35–42

    Article  Google Scholar 

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–383

    Article  Google Scholar 

  • Maraun M, Salamon J-A, Schneider K, Schaefer M, Scheu S (2003) Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biol Biochem 35:1387–1394

    Article  CAS  Google Scholar 

  • Marshall VG (2000) Impacts of forest harvesting on biological processes in northern forest soils. For Ecol Manag 133:43–60

    Article  Google Scholar 

  • Matějka K, Starý J (2009) Differences in top-soil features between beech-mixture and Norway spruce forests of the Šumava Mts. J For Sci 55:540–555

    Google Scholar 

  • Materna J (2002) Horizontal distribution, population dynamics and life cycle of Tetracanthella stachi (Collembola, Isotomidae) in mountain beech and spruce forests. Pedobiologia 46:385–394

    Google Scholar 

  • Materna J (2004) Does forest type and vegetation patchiness influence horizontal distribution of soil Collembola in two neighbouring forest sites? Pedobiologia 48:339–347

    Article  Google Scholar 

  • Niedbala W (1980) Mechowce—roztocze ekosystemow ladowych. Państwowe Wydawnictw Naukowe, Warsaw (in polish)

    Google Scholar 

  • Norton RA (1994) Evolutionary aspects of oribatid mite life histories and consequences or the origin of the Astigmata. In: Houck M (ed) Mites: ecological and evolutionary analyses of life-history patterns. Chapman and Hall, New York

  • Norton RA, Kethley JB, Johnston DE, O’Connor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratios. Chapman and Hall, New York

    Google Scholar 

  • Ojala J, Huhta V (2001) Dispersal of microarthropods in forest soil. Pedobiologia 45:443–450

    Article  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Pallisa A (1964) Apterygota—Die Tierwelt Mitteleuropas 4:1–407

  • Petersen H (2002) General aspects of collembolan ecology at the turn of the millennium. Pedobiologia 46:246–260

    Google Scholar 

  • Rusek J (2007) A new classification of Collembola and Protura life forms. In: Tajovský K, Schlaghamerský J, Pižl V (eds) Contributions to Soil Zoology in Central Europe II. ISB BC ASCR, České Budějovice

    Google Scholar 

  • Salamon J-A, Alphei J (2009) The Collembola community of a Central European forest: influence of tree species composition. Eur J Soil Biol 45:199–206

    Article  Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774

    Article  CAS  Google Scholar 

  • Schon NL, Mackay AD, Minor MA, Yeates GW, Hedley MJ (2008) Soil fauna in grazed New Zealand hill country pastures at two management intensities. Appl Soil Ecol 40:218–228

    Article  Google Scholar 

  • Siepel H (1995) Applications of microarthropod life-history tactics in nature management and ecotoxicology. Biol Fertil Soils 19:75–83

    Article  Google Scholar 

  • Siepel H, de Ruiter-Dijkman EM (1993) Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol Biochem 25:1491–1497

    Article  Google Scholar 

  • Siira-Pietikäinen A, Haimi J, Kanninen A, Pietikäinen J, Fritze H (2001) Responses of decomposer community to root-isolation and addition of slash. Soil Biol Biochem 33:1993–2004

    Article  Google Scholar 

  • Simard M, Romme WH, Griffin JM, Turner MG (2011) Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol Monogr 81:3–24

    Article  Google Scholar 

  • Starý J (2003) Changes of oribatid mite communities (Acari: Oribatida) in autochthonous spruce forests, Šumava Mountains, South Bohemia. In: Karas J (ed) Impact of management practices and spontaneous dynamics on the forest ecosystems, Conference book, Czech University of Life Sciences, Prague (in Czech)

  • Svoboda M, Janda P, Nagel TA, Fraver S, Rejzek J, Bače R (2012) Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. J Veg Sci 23:86–97

    Article  Google Scholar 

  • Takeda H (1995) A 5-year study of litter decomposition processes in a Chamaecyparis obtusa Endl. forest. Ecol Res 10:95–104

    Article  Google Scholar 

  • Travé J, Andre HM, Taberly G, Bernini F (1996) Les Acariens Oribates. Editions AGAR and SIALF, Belgium

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Wiwatwitaya D, Takeda H (2005) Seasonal changes in soil arthropod abundance in the dry evergreen forest of north-east Thailand, with special reference to collembolan communities. Ecol Res 20:59–70

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Ludmila Nosková for her kind help with laboratory work and to Ing. K. Matějka (IDOS, Praha, Czech Republic) for help in field and with samples treatment; to the Šumava National Park Authority; and to Keith Edwards for language revision. We thank to two anonymous reviewers for their helpful comments as well. The project was supported by grants from the Czech Science Foundation (No. 20 26/03/1259 and P504/12/1218), Ministry of Education, Youth, and Sports CR (LC06066), Research plan of BC ASCR, v. v. i.—ISB (No. Z6 066911) and Grant Agency of University of South Bohemia (No. 143/2010/P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Farská.

Appendix

Appendix

See Tables 2 and 3.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farská, J., Prejzková, K., Starý, J. et al. Soil microarthropods in non-intervention montane spruce forest regenerating after bark-beetle outbreak. Ecol Res 29, 1087–1096 (2014). https://doi.org/10.1007/s11284-014-1197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1197-3

Keywords

Navigation