Skip to main content
Log in

Fluvial transport of carbon along the river-to-ocean continuum and its potential impacts on a brackish water food web in the Iwaki River watershed, northern Japan

  • Special Feature
  • Trends in isotope ecology
  • Published:
Ecological Research

Abstract

Riverine transport of dissolved inorganic carbon (DIC) from land to the ocean is an important carbon flux that influences the carbon budget at the watershed scale. However, the dynamics of DIC in an entire river network has remained unknown, especially in mountainous Japanese watersheds. We examined the effects of watershed land use and geology on the transports of inorganic carbon as well as weathered silica (Si) and calcium (Ca) in the Iwaki River system where agricultural and residential areas have developed in the middle and lower parts of the watershed. The concentration and stable carbon isotope ratios (δ13C) of DIC showed the longitudinal increase of 13C-depleted inorganic carbon along the river. As a result, most streams and rivers were supersaturated in dissolved CO2 that will eventually be emitted to the atmosphere. The possible origin of 13C-depleted carbon is CO2 derived from the decomposition of organic matter in agricultural and urban landscapes, as well as from in-stream respiration. In addition, agricultural and urban areas, respectively, exported the large amount of dissolved Si and Ca to the rivers, suggesting that CO2 increased by respiration accelerates the chemical weathering of silicate and carbonate materials in soils, river sediments, and/or urban infrastructure. Furthermore, riverine bicarbonate flux is likely to enter shell carbonates of Corbicula japonica, an aragonitic bivalve, in the downstream brackish lake (Lake Jusan). These results revealed that the flux of DIC from the human-dominated watersheds is a key to understanding the carbon dynamics and food-web structure along the land-to-river-to-ocean continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander RB, Smith RA, Schwarz GE (2000) Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403:758–761

    Article  CAS  PubMed  Google Scholar 

  • Aucour A-M, Sheppard SMF, Guyomar O, Wattelet J (1999) Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chem Geol 159:87–105

    Article  CAS  Google Scholar 

  • Aucour A-M, Sheppard SMF, Savoye R (2003) δ13C of fluvial mollusk shells (Rhône River): a proxy for dissolved inorganic carbon? Limnol Oceanogr 48:2186–2193

    Article  CAS  Google Scholar 

  • Barnes R, Raymond PA (2009) The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem Geol 266:318–327

    Article  Google Scholar 

  • Bernard CY, Dürr HH, Heinze C, Segschneider J, Maier-Reimer E (2011) Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean—a modal study. Biogeosciences 8:551–564

    Article  CAS  Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    Article  CAS  Google Scholar 

  • Bluth GJS, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta 58:2341–2359

    Article  CAS  Google Scholar 

  • Boyd PW, Law CS, Wong CS, Nojiri Y, Tsuda A, Levasseur M, Takeda S, Rivkin R, Harrison PJ, Strzepek R, Gower J, McKay RM, Abraham E, Arychuk M, Barwell-Clarke J, Crawford W, Crawford D, Hale M, Harada K, Johnson K, Kiyosawa H, Kudo I, Marchetti A, Miller W, Needoba J, Nishioka J, Ogawa H, Page J, Robert M, Saito H, Sastri A, Sherry N, Soutar T, Sutherland N, Taira Y, Whitney F, Emmy Wong S-K, Yoshimura T (2004) The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428:549–553

    Article  CAS  PubMed  Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842

    Article  CAS  Google Scholar 

  • Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    Article  CAS  PubMed  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middleburg J, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. ORNL/CDIAC-74, Oak Ridge

  • Dubois KD, Lee D, Veizer J (2010) Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. J Geophys Res 115:G02018

    Article  Google Scholar 

  • Dürr HH, Meybeck M, Hartmann J, Laruelle GG, Roubeix V (2011) Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences 6:1345–1401

    Google Scholar 

  • Finlay JC (2003) Controls of streamwater dissolved organic carbon dynamics in a forested watershed. Biogeochemistry 62:231–252

    Article  CAS  Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Théate J-M (1998) Carbon dioxide emission from European estuaries. Science 282:434–436

    Article  CAS  PubMed  Google Scholar 

  • Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434

    Article  Google Scholar 

  • Griffith DR, Barnes RT, Raymond PA (2009) Input of fossil carbon from wastewater treatment plants to U.S. rivers and oceans. Environ Sci Technol 43:5647–5651

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SK, Kurzman AL, Arango C, Jin L, Robertson GP (2007) Evidence for carbon sequestration by agricultural liming. Global Biogeochem Cycles 21:GB2021

    Article  Google Scholar 

  • Hartmann J (2009) Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago—application of a multi-lithological model framework. Chem Geol 265:237–271

    Article  CAS  Google Scholar 

  • Hartmann J, Jansen N, Dürr HH, Harashima A, Okubo K, Kempe S (2010) Predicting riverine dissolved silica fluxes to coastal zones from a hyperactive region and analysis of their first-order controls. Int J Earth Sci 99:207–230

    Article  CAS  Google Scholar 

  • Humborg C, Conley DJ, Rahm L, Wulff F, Cociasu A, Ittekkot V (2000) Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29:45–50

    Google Scholar 

  • Kasai A, Toyohara H, Nakata A, Miura T, Azuma N (2006) Food sources for the bivalve Corbicula japonica in the foremost fishing lakes estimated from stable isotope analysis. Fish Sci 72:105–114

    Article  CAS  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301

    Article  CAS  PubMed  Google Scholar 

  • Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. Dover Publications, New York

    Google Scholar 

  • Ludwig W, Probst J-L, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles 10:23–41

    Article  CAS  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    Article  CAS  Google Scholar 

  • McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. Geo Mar Lett 28:287–299

    Article  CAS  Google Scholar 

  • Meybeck M, Dürr HH, Vörösmarty CJ (2006) Global coastal segmentation and its river catchment contributors: a new tool at land–ocean linkage. Global Biogeochem Cycles 20:GB1S90

    Article  Google Scholar 

  • Minoura K, Nakaya S (1990) Origin of inter-tidal lake and marsh environments in and around Lake Jusan, Tsugaru. Mem Geol Soc Japan 36:71–87

    Google Scholar 

  • Miyajima T, Yamada Y, Hanba YT, Yoshii K, Koitabashi T, Wada E (1995) Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IRMS. Limnol Oceanogr 40:994–1000

    Article  Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Article  CAS  Google Scholar 

  • Nakano T, Tayasu I, Yamada Y, Hosono T, Igeta A, Hyodo F, Ando A, Saitoh Y, Tanaka T, Wada E, Yachi S (2008) Effect of agriculture on water quality of Lake Biwa tributaries, Japan. Sci Total Environ 389:132–148

    Article  CAS  PubMed  Google Scholar 

  • Oh N-H, Raymond PA (2006) Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin. Global Biogeochem Cycles 20:GB3012

    Article  Google Scholar 

  • Ohte N, Tokuchi N (1999) Geographical variation of the acid buffering of vegetated catchments: factors determining the bicarbonate leaching. Global Biogeochem Cycles 13:969–996

    Article  CAS  Google Scholar 

  • Raymond PA, Cole JJ (2003) Increase in the export of alkalinity from North America’s largest river. Science 301:88–91

    Article  CAS  PubMed  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Science 416:617–620

    CAS  Google Scholar 

  • Rodríguez-Navarro C, Sebastián E, Rodríguez-Gallego M (1997) An urban model for dolomite precipitation: authigenic dolomite on weathered building stones. Sediment Geol 109:1–11

    Article  Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430

    Article  CAS  Google Scholar 

  • Rose A, Waite D (2003) Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar Chem 84:85–103

    Article  CAS  Google Scholar 

  • Schlesinger WH, Melack JM (1981) Transport of organic carbon in the world’s rivers. Tellus 33:172–187

    Article  CAS  Google Scholar 

  • Smith RA, Schwarz GE, Alexander RB (1997) Regional interpretation of water-quality monitoring data. Wat Resour Res 33:2781–2798

    Article  CAS  Google Scholar 

  • Sobczak WV, Cloern JE, Jassby AD, Müler-Solger AB (2002) Bioavailability of organic matter in a highly disturbed estuary: the role of detrital and algal resources. Proc Natl Acad Sci USA 99:8101–8105

    Article  CAS  PubMed  Google Scholar 

  • Sobek S, Algesten G, Bergström A-K, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO2 in boreal lakes. Global Change Biol 9:630–641

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  • Umitsu M (1976) Geomorphic development of the Tsugaru Plain in the Holocene period. Geogr Rev Japan 49:714–735

    Article  Google Scholar 

  • West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosyst Environ 108:145–154

    Article  CAS  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2003) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam

    Google Scholar 

  • Zeng FW, Masiello CA, Hockaday WC (2011) Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas. Biogeochemistry 104:275–291

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Sasaki, N. Azuma, H. Watanabe, M. Yoshimura, D. Naito, Y. Horikawa, M. Itoh, and the Aomori Office of River and National Highway for their support to our study. The stable isotope analysis was conducted using Cooperative Research Facilities (Isotope Ratio Mass Spectrometer) at the Center for Ecological Research, Kyoto University. The study was fulfilled as a part of the tasks of the Iwaki River Research Group, and was supported financially by the Foundation for Riverfront Improvement and Restoration and partly by the Environment Research and Technology Development Fund (D-1002) of the Ministry of the Environment, Japan to JU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Iwata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1535 kb)

About this article

Cite this article

Iwata, T., Suzuki, T., Togashi, H. et al. Fluvial transport of carbon along the river-to-ocean continuum and its potential impacts on a brackish water food web in the Iwaki River watershed, northern Japan. Ecol Res 28, 703–716 (2013). https://doi.org/10.1007/s11284-013-1047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-013-1047-8

Keywords

Navigation