Skip to main content

Advertisement

Log in

Basic study of three-dimensional fine vascular structural analysis based on morphological processing

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objective

To develop a new evaluation method that utilizes three-dimensional morphological filter processing for the analysis of fine vascular structures.

Methods

Three-dimensional morphological filter processing was applied to a simulated vascular image to extract a binary skeletal pattern. To assess the precision of the proposed method, grayscale test charts were created using standard graphics software and evaluated visually. In addition, to access the accuracy of the grayscale test charts, phantom images with varied densities and structures were obtained by computed tomography and a quantitative evaluation was performed by calculation of morphological indices and a node-strut analysis.

Results

Application of the three-dimensional morphological filter allowed fine vascular structures to be extracted as binary skeletal patterns. In the quantitative analysis, all parameters showed strong correlations (R 2 = 0.983–1.000) between the theoretical and measured values.

Conclusion

The results suggest that the new method has potential for three-dimensional analysis of fine vascular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hosokawa S, Kawai N, Sato M, Minamiguchi H, Nakai M, Nishioku T, et al. Optimal contrast material concentration for distinguishing among carotid artery lumen, carotid stent, and neck in cone-beam computed tomography during carotid angiography: basic and clinical studies. Jpn J Radiol. 2012;30:358–64.

    Article  PubMed  Google Scholar 

  2. Nomura Y, Watanabe H, Honda E, Kurabayashi T. Reliability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral density. Clin Oral Implants Res. 2010;21:558–62.

    Article  PubMed  Google Scholar 

  3. Ito M. Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology. 1995;194:55–9.

    PubMed  Google Scholar 

  4. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis: implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983;72:1396–409.

    Article  PubMed  Google Scholar 

  5. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2:595–610.

    Article  PubMed  Google Scholar 

  6. Garrahan NJ, Mellish RW, Compston JE. A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J Microsc. 1986;142:341–9.

    Article  PubMed  Google Scholar 

  7. Croucher PI, Garrahan NJ, Compston JE. Assessment of cancellous bone structure: comparison of strut analysis, trabecular bone pattern factor, and marrow space star volume. J Bone Miner Res. 1996;11:955–61.

    Article  PubMed  Google Scholar 

  8. Kim CK, Lim JH, Park CK, Choi D, Lim HK, Lee WJ. Neoangiogenesis and sinusoidal capillarization in hepatocellular carcinoma: correlation between dynamic CT and density of tumor microvessels. Radiology. 2005;237:529–34.

    Article  PubMed  Google Scholar 

  9. Kanematsu M, Osada S, Amaoka N, Goshima S, Kondo H, Kato H, et al. Expression of vascular endothelial growth factor in hepatocellular carcinoma and the surrounding liver and correlation with MRI findings. Am J Roentgenol. 2005;184:832–41.

    Google Scholar 

  10. McKinney AM, Palmer CS, Truwit CL, Karagulle A, Teksam M. Detection of aneurysms by 64-section multidetector CT angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. AJNR. 2008;29:594–602.

    Article  PubMed  Google Scholar 

  11. Jayaraman MV, Mayo-Smith WW, Tung GA, Haas RA, Rogg JM, Mehta NR, et al. Detection of intracranial aneurysms: multi-detector row CT angiography compared with DSA. Radiology. 2004;230:510–8.

    Article  PubMed  Google Scholar 

  12. Karamessini MT, Kagadis GC, Petsas T, Karnabatidis D, Konstantinou D, Sakellaropoulos GC, et al. CT angiography with three-dimensional techniques for the early diagnosis of intracranial aneurysms. Comparison with intra-arterial DSA and the surgical findings. Eur J Radiol. 2004;49:212–23.

    Article  PubMed  Google Scholar 

  13. Tsutsumi Y, Suzuki K, Ikeda M, Achiwa M, Mori Y, Matsushima M, et al. Three-dimensional intravenous digital subtraction angiography using flat panel detector system in vascular mapping of the external carotid artery: a comparison with 3-dimensional computed tomography angiography. Curr Med Imaging Rev. 2009;5:216–21.

    Article  Google Scholar 

  14. Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol. 2007;17:2767–79.

    Article  PubMed  Google Scholar 

  15. Engelhorn T, Struffert T, Richter G, Doelken M, Ganslandt O, Kalender W, et al. Flat panel detector angiographic CT in the management of aneurysmal rupture during coil embolization. AJNR. 2008;29:1581–4.

    Article  PubMed  Google Scholar 

  16. Akpek S, Brunner T, Benndorf G, Strother C. Three-dimensional imaging and cone beam volume CT in C-arm angiography with flat panel detector. Diagn Interv Radiol. 2005;11:10–3.

    PubMed  Google Scholar 

  17. Baba R, Konno Y, Ueda K, Ikeda S. Comparison of flat-panel detector and image-intensifier detector for cone-beam CT. Comput Med Imaging Graph. 2002;26:153–8.

    Article  PubMed  Google Scholar 

  18. Ferencik M, Chan RC, Achenbach S, Lisauskas JB, Houser SL, Hoffmann U, et al. Arterial wall imaging: evaluation with 16-section multidetector CT in blood vessel phantoms and ex vivo coronary arteries. Radiology. 2006;240:708–16.

    Article  PubMed  Google Scholar 

  19. Heilmaier C, Sutter R, Lutz AM, Seifert B, Weishaupt D, Marincek B, et al. Mapping of hepatic vascular anatomy: dynamic contrast-enhanced parallel MR imaging compared with 64-detector row CT. Radiology. 2007;245:872–80.

    Article  PubMed  Google Scholar 

  20. Carr JC, Nemcek AA Jr, Abecassis M, Blei A, Clarke L, Pereles FS, et al. Preoperative evaluation of the entire hepatic vasculature in living liver donors with use of contrast-enhanced MR angiography and true fast imaging with steady-state precession. J Vasc Interv Radiol. 2003;14:441–9.

    Article  PubMed  Google Scholar 

  21. Hecht EM, Holland AE, Israel GM, Hahn WY, Kim DC, West AB, et al. Hepatocellular carcinoma in the cirrhotic liver: gadolinium-enhanced 3D T1-weighted MR imaging as a stand-alone sequence for diagnosis. Radiology. 2006;239:438–47.

    Article  PubMed  Google Scholar 

  22. Lee VS, Lavelle MT, Rofsky NM. Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology. 2000;215:365–72.

    PubMed  Google Scholar 

  23. McKenzie CA, Lim D, Ransil BJ, Morrin M, Pedrosa I, Yeh EN, et al. Shortening MR image acquisition time for volumetric interpolated breath-hold examination with a recently developed parallel imaging reconstruction technique: clinical feasibility. Radiology. 2004;230:589–94.

    Article  PubMed  Google Scholar 

  24. Freeny PC, Marks WM. Patterns of contrast enhancement of benign and malignant hepatic neoplasms during bolus dynamic and delayed CT. Radiology. 1986;160:613–8.

    PubMed  Google Scholar 

  25. Kumasaka S, Kashima I. Initial investigation of mathematical morphology for the digital extraction of the skeletal characteristics of trabecular bone. Dentomaxillofac Radiol. 1997;26:161–8.

    Article  PubMed  Google Scholar 

  26. Hisai H, Kato J, Kobune M, Murakami T, Miyanishi K, Takahashi M, et al. Increased expression of angiogenin in hepatocellular carcinoma in correlation with tumor vascularity. Clin Cancer Res. 2003;9:4852–9.

    PubMed  Google Scholar 

  27. Serra J. Morphology for gray-tone functions. In: Serra J, editor. Image analysis and mathematical morphology, volume 1. Tokyo: Academic; 1982. p. 424–78.

  28. Serra J. Mathematical morphology for complete lattices. In: Serra J, editor. Image analysis and mathematical morphology, volume 2. Tokyo: Academic; 1988. p. 13–36.

  29. Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol. 2008;53:R319–50.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Kawamata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamata, R., Sakurai, T. & Kashima, I. Basic study of three-dimensional fine vascular structural analysis based on morphological processing. Oral Radiol 29, 40–49 (2013). https://doi.org/10.1007/s11282-012-0107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-012-0107-z

Keywords

Navigation