Skip to main content

Advertisement

Log in

A Hybrid Adaptive Coding and Decoding Scheme for Multi-hop Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we have proposed a hybrid adaptive coding and decoding scheme for multi-hop wireless sensor networks (WSNs). Energy consumption and transmission reliability are used as performance metrics for multi-hop communications in WSNs. The presented scheme takes into account distance, channel conditions and correction codes performance to decide coding and decoding procedure, and considers Reed Solomon code and Low Density Parity Check code to provide error protection on the transmitted data. The proposed approach aims to reduce the decoding power consumption and to prolong the lifetime of the network as well as improve the reliability of the transmission. Simulation results show that our performed scheme enhances both energy efficiency and communication reliability of multi-hop sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmad Fahmy, H. M. (2016). WSNs applications. Wireless sensor networks. Singapore: Springer.

    Book  Google Scholar 

  2. Ammari, H. M., & Das, S. K. (2012). Centralized and clustered k-coverage protocols for wireless sensor networks. IEEE Transactions on Computers, 61, 118–133.

    Article  MathSciNet  Google Scholar 

  3. Yadav, S., & Yadav, R. S. (2015). A review on energy efficient protocols in wireless sensor networks. Wireless Networks, 22(1), 335–350.

    Article  Google Scholar 

  4. Kim, H. W., & Kachroo, A. (2016). Low power routing and channel allocation of wireless video sensor networks using wireless link utilization. Ad Hoc and Sensor Wireless Networks, 30, 83–112.

    Google Scholar 

  5. Lee, D.-W., & kim, J.-H. (2010). High reliable in-network data verification in wireless sensor networks. Wireless Personal Communications, 54, 501–519.

    Article  Google Scholar 

  6. Mahmood, M. A., Seah, W. K. G., & Welch, I. (2015). Reliability in wireless sensor networks: A survey and challenges ahead. Computer Networks (Elsevier), 79, 166–187.

    Article  Google Scholar 

  7. Howard, S. L., Schlegel, C., & Iniewski, K. (2006). Error control coding in low-power wireless sensor networks: When is ECC energy-efficient? EURASIP Journal on Wireless Communications and Networking, 2006, 1–14.

    Article  Google Scholar 

  8. Elshabrawy, Tallal. (2015). Network throughput analysis of IEEE 802.15.4 enabled wireless sensor networks with FEC coding under external interference. International Journal of Electronics and Communications (AEU), Elsevier, 69(11), 1641–1649.

    Article  Google Scholar 

  9. Vuran, M. C., & Akyildiz, I. F. (2009). Error control in wireless sensor networks: A cross layer analysis. IEEE/ACM Transactions on Networking, 17, 1186–1199.

    Article  Google Scholar 

  10. Ali, Alrajeh N., Marwat, U., Shams, B., & Shah, S. S. H. (2015). Error correcting codes in wireless sensor networks: An energy perspective. Applied Mathematics and Information Sciences, 9(2), 809–818.

    MathSciNet  Google Scholar 

  11. Salija, P., & Yamuna, B. (2015). Optimum energy efficient error control techniques in wireless systems: A survey. Journal of Communications Technology and Electronics, 60(11), 1257–1263.

    Article  Google Scholar 

  12. Abughalieh, N., Steenhaut, K., Nowe, A., & Anpalagan, A. (2014). Turbo codes for multi-hop wireless sensor networks with decode-and-forward mechanism. EURASIP Journal on Wireless Communications and Networking, 2014(1), 1–13.

    Article  Google Scholar 

  13. Padilla, P., Camacho, J., Macia-Fernandez, G., Diaz-Verdejo, J. E., Garcia-Teodoro, P., & Gomez-Calero, C. (2012). On the influence of the propagation channel in the performance of energy-efficient geographic routing algorithms for wireless sensor networks (WSN). Wireless Personal Communications, 70, 15–38.

    Article  Google Scholar 

  14. Chouhan, S., Bose, R., & Balakrishnan, M. (2009). Framework for energy consumption based design space exploration for wireless sensor nodes. IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, 28, 1017–1024.

    Article  Google Scholar 

  15. Kleinschmidt, J. H., Borelli, W. C., & Pellenz M. E. (2007). An analytical model for energy efficiency of error control schemes in sensor networks. International Conference on Communications, 3895–3900.

  16. Kleinschmidt, Joao H., Borelli, Walter C., & Pellenz, Marcelo E. (2009). An energy efficiency model for adaptive and custom error control schemes in bluetooth sensor networks. AEU-International Journal of Electronics and Communications (Elsevier), 63, 188–199.

    Article  Google Scholar 

  17. Nithya, V., Ramachandran, B., & Bhaskar, V. (2014). Energy efficient coded communication for IEEE 802.15.4 compliant wireless sensor networks. Wireless Personal Communications, 77, 675–690.

    Article  Google Scholar 

  18. Kiss, Z. I., Polgar, Z. A., Stef, M. P., & Bota, V. (2014). Improving transmission reliability in wireless sensor networks using network coding. Telecommunication Systems, 59(4), 509–521.

    Article  Google Scholar 

  19. Pellenz, M. E., Souza, R. D., & Fonseca, M. S. P. (2010). Error control coding in wireless sensor networks. Journal of Telecommunication Systems, 44, 61–68.

    Article  Google Scholar 

  20. Biroli, A. D. G., Martina, M., & Masera, G. (2012). An LDPC decoder architecture for wireless sensor network applications. Sensors Journal, 12, 1529–1543.

    Article  Google Scholar 

  21. Li, L., Maunder, R. G., Al-Hashimi, B. M., & Hanzo, L. (2013). A low-complexity turbo decoder architecture for energy-efficient wireless sensor networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21, 14–22.

    Article  Google Scholar 

  22. Soude, H., Agueh, M., & Mehat, J. (2009). Towards an optimal Reed Solomon codes selection for sensor networks. In Proceedings of the 6th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (pp. 165–166). ACM Press.

  23. Ez-zazi, I., Arioua, M., El Oualkadi, A., & El Assari, Y. (2015). Performance analysis of efficient coding schemes for wireless sensor networks. In Proceedings of IEEE international workshop on RFID and wireless sensor network RAWSN (pp. 42–47).

  24. Chouhan, S., Bose, R., & Balakrishnan, M. (2009). Integrated energy analysis of error correcting codes and modulation for energy efficient wireless sensor nodes. IEEE Transactions on Wireless Communications, 8(10), 5348–5355.

    Article  Google Scholar 

  25. Richardson, T., & Urbanke, R. (2001). Efficient encoding of low-density parity-check codes. IEEE Transaction on Information Theory, 47, 638–656.

    Article  MathSciNet  MATH  Google Scholar 

  26. Pham, Duc Minh, & Aziz, Syed Mahfuzul. (2014). On efficient design of LDPC decoders for wireless sensor networks. Journal of networks, 9, 3207–3214.

    Article  Google Scholar 

  27. Choi, S.-M., & Moon, B.-H. (2011). Implementation of energy efficient LDPC code for wireless sensor node. Communication and networking. Berlin: Springer.

    Google Scholar 

  28. Javaid, N., Rehman, O., Alrajeh, N., Khan, Z. A., Manzoor, B., & Ahmed, S. (2013). AID: An Energy efficient decoding scheme for LDPC codes in wireless body area sensor networks. In International workshop on communications and sensor networks (pp. 449–554).

  29. Schmidt, D., Berning, M., & Wehn, N. (2009). Error correction in single-hop wireless sensor networks—a case study. In Design, automation, and test in Europe conference and exhibition (pp. 1296–1301), Nice.

  30. Zhong, L. C., Rabaey, J. M., & Wolisz, A. (2005). Does proper coding make single hop wireless sensor networks reality: the power consumption perspective. In IEEE wireless communications and networking conference in USA (pp. 664–669).

  31. Gallager, R. G. (1962). Low-density parity-check codes. IRE Transaction on Information Theory, 8, 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  32. Tanner, R. M. (1981). A recursive approach to low complexity codes. IEEE Transaction on Information Theory, 27(9), 533–548.

    Article  MathSciNet  MATH  Google Scholar 

  33. MacKay, D. J. C. (2002). Good error-correcting codes based on very sparse matrices. IEEE Transaction on Information Theory, 45, 399–431.

    Article  MathSciNet  MATH  Google Scholar 

  34. Sang-Min Choi, & Byung-Hyun Moon (2006). Performance analysis on wireless sensor network using LDPC codes over node-to-node interference. In proceedings of the international technical conference on circuits systems, computers and communications (ITC-CSCC) (Vol. 3, pp. 461–464).

  35. Sankarasubramaniam, Y., Akyuildiz, I. F., & McLaughin, S. W. (2003). Energy efficiency based packet size optimization in wireless sensor networks. In Proceedings of IEEE international workshop on sensor network protocols and applications SNPA’03 (pp. 1–8).

  36. Giacomin, J. C., Correia, L. H. A., Heimfarth, T., Pereira, G. M., Silva, V. F., & De Santana, J. L. (2010). Radio channel model of wireless sensor networks operating in 2.4 GHz ISM band. INFOCOMP Journal of Computer Science, 9, 98–106.

    Google Scholar 

  37. Rappaport, T. (1996). Wireless communications: Principles and practice. Englewood Cliffs, NJ: Prentice-Hall Inc.

    MATH  Google Scholar 

  38. Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  39. Li, L., Maunder, R. G., Al-Hashimi, B. M., & Hanzo, L. (2010). An energy-efficient error correction scheme for IEEE 802.15.4 wireless sensor networks. IEEE Transactions on Circuits and Systems II, 57, 233–237.

    Article  Google Scholar 

  40. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1, 660–670.

    Article  Google Scholar 

  41. Qin, Lu, Luo, Wusheng, Wang, Jidong, & Chen, Bo. (2008). Low-complexity and energy efficient image compression scheme for wireless sensor networks. Computer Networks (Elsevier), 52(13), 2594–2603.

    Article  MATH  Google Scholar 

  42. Roberts, M. K., & Jayabalan, R. (2014). An improved low complex hybrid weighted bit-flipping algorithm for LDPC codes. Wireless Personal Communications, 82, 327–339.

    Article  Google Scholar 

  43. Martinez, K., Padhy, P., Riddoch, A., Ong, H., & Hart, J. K. (2005). Glacial environment monitoring using sensor networks. In Real-world wireless sensor networks workshop (pp. 10–14).

  44. Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., et al. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing Journal, 10, 18–25.

    Article  Google Scholar 

  45. Benkic, K., Malajner, M., Planinsic, P., & Cucej, Z. (2008). Using RSSI value for distance estimation in wireless sensor networks based on ZigBee. In International IEEE conference of systems, signals and image processing (IWSSIP) (pp. 303-306).

  46. Botta, Miroslav, & Simek, Milan. (2013). Adaptive distance estimation based on RSSI in 802.15.4 network. Radioengineering Journal, 22, 1162–1168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Ez-zazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ez-zazi, I., Arioua, M., El Oualkadi, A. et al. A Hybrid Adaptive Coding and Decoding Scheme for Multi-hop Wireless Sensor Networks. Wireless Pers Commun 94, 3017–3033 (2017). https://doi.org/10.1007/s11277-016-3763-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3763-1

Keywords

Navigation