Skip to main content
Log in

A Compact UWB Koch Fractal Antenna for UWB Antenna Array Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, compact ultrawideband (UWB) antennas (1-Element and 2-Element) are presented in order to demonstrate application of fractal geometry in UWB antenna design, which helps to improve the antenna characteristics in a given smaller area. Some features of Euclidean shape geometry are improved after the application of fractals at the edges of the polygon. It is demonstrated that the application of Koch fractal in the antenna design helps to achieve the desired miniaturization, compactness and wideband operability due to its self-similar and space filling characteristics. An analytical expression is provided to calculate the effective length and area of the structure with the increase in iteration’s order. Its performance is further compared with other fractal geometries such as Minkowski and Sierpinski curve. It is observed that the proposed Koch fractal based antenna yields the widest bandwidth and better gain compared to other fractal geometry based antennas. In addition, the time-domain analysis of the antenna is performed in terms of fidelity factor and its values are better than 0.81. 1-Element antennas shows operational bandwidth from 2.3 to 13.2 GHz with a maximum gain value of 3.8 dB, whereas in case of 2-Element antenna operating bandwidth is 2.3−14 GHz with a maximum gain value of 7.2 dB. Moreover, the radiation patterns of the single element and 2-Element are nearly omnidirectional. These characteristics offer opportunities to explore the proposed UWB antenna for various applications such as WPAN, WBAN, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Amin, Y., Chen, Q., Tenhunen, H., & Zheng, L. R. (2012). Performance-optimized quadrate bowtie RFID antennas for cost-effective and eco-friendly industrial applications. Progress In Electromagnetics Research, 126, 49–64.

    Article  Google Scholar 

  2. Guterman, J., Moreira, A. A., & Peixeiro, C. (2004). Microstrip fractal antennas for multistandard terminals. IEEE Antennas and Wireless Propagation Letters, 3, 351–354.

    Article  Google Scholar 

  3. Werner, D. H., Haupt, R. L., & Werner, P. L. (1999). Fractal antenna engineering: The theory and design of fractal antenna arrays. IEEE Antennas and Propagation Magazine, 41(5), 37–58.

    Article  Google Scholar 

  4. Anguera, J., Puente, C., Borja, C., & Soler, J. (2005). Fractal-shaped Antennas: A review. Wiley Encyclopedia of RF and Microwave Engineering, 2, 1620–1635.

    Google Scholar 

  5. Haji-Hashemi, M. R., Sadeghi, M. M. M., & Moghtadai, V. M. (2006). Space-filling patch antennas with CPW feed. In Progress in Electromagnetics research symposium (pp. 26–29).

  6. Fekadu, M.G., & Sinha, S.N. (2011). UWB fractal slot antenna designs. In: 2011 IEEE international conference on microwaves, communications, antennas and electronics systems (COMCAS), (pp. 1–4).

  7. Puente-Baliarda, C., Romeu, J., Pous, R., & Cardama, A. (1998). On the behavior of the Sierpinski multiband fractal antenna. IEEE Transactions on Antennas and Propagation, 46(4), 517–524.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tripathi, S., Mohan, A., & Yadav, S. (2014). Ultra wideband (UWB) antenna using Minkowski like fractal geometry. Microwave and Optical Technology Letters, 56(3), 2273–2279.

    Article  Google Scholar 

  9. Tripathi, S., Mohan, A., & Yadav, S. (2014). A multi notched octagonal shaped fractal uwb antenna. Microwave and Optical Technology Letters, 56(11), 2469–2473.

    Article  Google Scholar 

  10. Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, 45(1), 38–57.

    Article  Google Scholar 

  11. Liu, H. Z., Coetzee, J. C., & Mouthaan, K. (2008). UWB antenna array for wireless transmission along corridors. Microwave and Optical Technology Letters, 50(4), 886–890.

    Article  Google Scholar 

  12. Yang, Y. Y., & Chu, Q. X. (2008). Planar 4-element UWB antenna array for wireless transmission along corridors. Microwave and Optical Technology Letters, 50(12), 3118–3123.

    Article  Google Scholar 

  13. Ahmed, O. M. H., & Sebak, A. R. (2008). Planar ultrawideband antenna array for short range wireless communications. Microwave and Optical Technology Letters, 50(4), 3118–3123.

    Google Scholar 

  14. Choukiker, Y.K., Behera, S.K., & Sharma, S.K. (2013). Two and four-element wideband Sectoral fractal array antennas with omni-directional radiation patterns. In Applied electromagnetics conference (AEMC), 2013 IEEE, (pp. 1–2).

  15. Dhar, S., Ghatak, R., Gupta, B., & Poddar, D. R. (2013). A Wideband Minkowski fractal dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 61(6), 2895–2903.

    Article  MathSciNet  Google Scholar 

  16. Daotie, Li, & Jun-Fa, Mao. (2012). A Koch-like sided fractal bow-tie dipole antenna. IEEE Transactions on Antennas and Propagation, 60(5), 2242–2251.

    Article  MathSciNet  Google Scholar 

  17. Tasouji, N., Nourinia, J., Ghobadi, C., & Tofigh, F. (2013). A novel printed UWB slot antenna with reconfigurable band-notch characteristics. IEEE Antennas and Wireless Propagation Letters, 12, 922–925.

    Article  Google Scholar 

  18. Ning, Chen Zhi, See, T. S. P., & Xianming, Qing. (2007). Small printed ultrawideband antenna with reduced ground plane effect. IEEE Transactions on Antennas and Propagation, 55(2), 383–388.

    Article  Google Scholar 

  19. Ahmed, O. M. H. (2011). Ultra-wideband antennas and components for wireless communication systems. Ph.D thesis, Department of Electrical and Computer Engineering, Concordia University Montreal, Quebec, Canada.

  20. Balanis, C. A. (2005). Antenna theory, analysis and design. Hoboken: Wiley.

    Google Scholar 

  21. Koohestani, M., Pires, N., Skrivervik, A. K., & Moreira, A. A. (2013). Time domain performance of patch-loaded band-reject UWB antenna. Electronics Letters, 49(6), 385–386.

    Article  Google Scholar 

  22. Wu, Q., Jin, R., Geng, J., & Ding, M. (2007). Pulse preserving capabilities of printed circular disk monopole antennas with different grounds for the specified input signal forms. IEEE Transactions on Antennas and Propagation, 55(10), 2866–2873.

    Article  Google Scholar 

  23. Ma, T. G., & Jeng, S. K. (2005). Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios. IEEE Transactions on Antennas and Propagation, 53(3), 1194–1202.

    Article  Google Scholar 

  24. Chacko, B. P., Augustin, G., & Denidni, T. A. (2013). Uniplanar slot antenna for ultrawideband polarization-diversity applications. IEEE Antennas and Wireless Propagation Letters, 12, 88–91.

    Article  Google Scholar 

  25. Allen, B., Dohler, M., Okon, E. E., Malik, W. Q., Brown, A. K., & Edwards, D. J. (2007). Ultra-wideband antennas and propagation for communications radar and imaging, ch 7. Hoboken: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrivishal Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S., Mohan, A. & Yadav, S. A Compact UWB Koch Fractal Antenna for UWB Antenna Array Applications. Wireless Pers Commun 92, 1423–1442 (2017). https://doi.org/10.1007/s11277-016-3613-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3613-1

Keywords

Navigation