Skip to main content

Advertisement

Log in

Buffer Aware Medium Access Control: A Cross Layer Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Congestion at any node of a network occurs when packet incoming rate exceeds its outgoing rate. This specific problem degrades the performance of the network in terms of throughput and energy consumption. Hence, designing a more efficient congestion control protocol for the networks having limited energy resources like ad hoc network is much more important. Due to lack of infrastructure in wireless ad hoc networks, interference causes packet drop. IEEE 802.11 medium access control (MAC) protocol implements request to send and clear to send (CTS) mechanism to avoid interference. Similarly, the transport layer protocols control the congestion by managing packet flow rate. Still, drop of packets due to buffer overwhelming have not been controlled completely as buffer availability is ignored by data link layer. In this paper, buffer-aware medium access control (BA-MAC) protocol is proposed to avoid packet drop by sending CTS only if buffer has a free slot. Thus, BA-MAC attempts to reduce packet drop by improving the channel reservation mechanism using cross layer approach. To the best of our knowledge, it is the first attempt that uses cross layer approach between data link and transport layer to control congestion. The performance of the proposed protocol via simulation shows significant improvements over default MAC in terms of throughput, average packet loss and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  2. Rathnayaka, A. D., & Potdar, V. M. (2013). Wireless sensor network transport protocol: A critical review. Journal of Network and Computer Applications, 36(1), 134–146.

    Article  Google Scholar 

  3. Zhu, H., Li, M., Chlamtac, I., & Prabhakaran, B. (2004). A survey of quality of service in IEEE 802.11 networks. IEEE Wireless Communications, 11(4), 6–14.

    Article  Google Scholar 

  4. Karn, P. (1990). MACA-a new channel access method for packet radio In: ARRL/CRRL Amateur radio 9th computer networking conference (Vol. 140, pp. 134–140).

  5. Kafi, M. A., Djenouri, D., Ben-Othman, J., & Badache, N. (2014). Congestion control protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1369–1390.

    Article  Google Scholar 

  6. Sergiou, C., Antoniou, P., & Vassiliou, V. (2014). A comprehensive survey of congestion control protocols in wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(4), 1839–1859.

    Article  Google Scholar 

  7. Fu, B., Xiao, Y., Deng, H., & Zeng, H. (2014). A survey of cross-layer designs in wireless networks. IEEE Communications Surveys & Tutorials, 16(1), 110–126.

    Article  Google Scholar 

  8. Foukalas, F., Gazis, V., & Alonistioti, N. (2008). Cross-layer design proposals for wireless mobile networks: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 10(1), 70–85.

    Article  Google Scholar 

  9. Kleinrock, L., Tobagi, F., et al. (1975). Packet switching in radio channels: Part I-carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transactions on Communications, 23(12), 1400–1416.

    Article  MATH  Google Scholar 

  10. Fitzek, F., Köpsel, A., Wolisz, A., Krishnam, M., & Reisslein, M. (2002). Providing application-level QoS in 3G/4G wireless systems: A comprehensive framework based on multirate CDMA. IEEE Wireless Communications, 9(2), 42–47.

    Article  Google Scholar 

  11. Pattara-Atikom, W., Krishnamurthy, P., & Banerjee, S. (2003). Distributed mechanisms for quality of service in wireless LANs. IEEE Wireless Communications, 10(3), 26–34.

    Article  Google Scholar 

  12. Marques, V., Aguiar, R. L., Garcia, C., Moreno, J. I., Beaujean, C., Melin, E., et al. (2003). An IP-based QoS architecture for 4G operator scenarios. IEEE Wireless Communications, 10(3), 54–62.

    Article  MATH  Google Scholar 

  13. Mangold, S., Choi, S., Hiertz, G. R., Klein, O., & Walke, B. (2003). Analysis of IEEE 802.11 e for QoS support in wireless LANs. IEEE Wireless Communications, 10(6), 40–50.

    Article  Google Scholar 

  14. Schiller, J. (2001). Mobile communications. London: Pearson Education Limited.

    Google Scholar 

  15. Bharghavan, V., Demers, A., Shenker, S., & Zhang, L. (1994). MACAW: A media access protocol for wireless LAN’s. In ACM SIGCOMM computer communication review (Vol. 24, pp. 212–225). ACM.

  16. Vaidya, N., Dugar, A., Gupta, S., & Bahl, P. (2005). Distributed fair scheduling in a wireless LAN. IEEE Transactions on Mobile Computing, 4(6), 616–629.

    Article  Google Scholar 

  17. Krishna, P. V., & Iyengar, N. C. S. (2008). Sequencing technique: An enhancement to 802.11 medium access control to improve the performance of wireless networks. International Journal of Communication Networks and Distributed Systems, 1(1), 52–70.

    Article  Google Scholar 

  18. Shi, K., Yang, O., Shu, Y., Lin, S., Wang, J., & Luo, J. (2013). A distributed MAC layer congestion control method to achieve high network performance for EAST experiments. IEEE Transactions on Nuclear Science, 60(5), 3758–3763.

    Article  Google Scholar 

  19. Iyengar, N. C. S., & Venkata Krishna, P. (2008). Design of sequencing medium access control to improve the performance of wireless networks. CIT. Journal of Computing and Information Technology, 16(2), 81–89.

    Article  Google Scholar 

  20. Rangwala, S., Gummadi, R., Govindan, R., & Psounis, K. (2006). Interference-aware fair rate control in wireless sensor networks. ACM SIGCOMM Computer Communication Review, 36(4), 63–74.

    Article  Google Scholar 

  21. Bianchi, G., Fratta, L., & Oliveri, M. (1996). Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs. In: Seventh IEEE international symposium on personal, indoor and mobile radio communications, 1996. PIMRC’96 (Vol. 2, pp. 392–396). IEEE.

  22. Cali, F., Conti, M., & Gregori, E. (2000). IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism. IEEE Journal on Selected Areas in Communications, 18(9), 1774–1786.

    Article  Google Scholar 

  23. Lin, X., Shroff, N. B., & Srikant, R. (2006). A tutorial on cross-layer optimization in wireless networks. IEEE Journal on Selected Areas in Communications, 24(8), 1452–1463.

    Article  Google Scholar 

  24. Georgiadis, L., Neely, M. J., & Tassiulas, L. (2006). Resource allocation and cross-layer control in wireless networks. Hanover: Now Publishers Inc.

    MATH  Google Scholar 

  25. Shakkottai, S., Rappaport, T. S., & Karlsson, P. C. (2003). Cross-layer design for wireless networks. IEEE Communications Magazine, 41(10), 74–80.

    Article  Google Scholar 

  26. Miyoshi, M., Sugano, M., & Murata, M. (2002). Improving TCP performance for wireless cellular networks by adaptive FEC combined with explicit loss notification. IEICE Transactions on Communications, 85(10), 2208–2213.

    Google Scholar 

  27. Balakrishnan, H., & Katz, R. H. (1998). Explicit loss notification and wireless web performance. In Proceedings of the IEEE Globecom (Vol. 98).

  28. Bender, P., Black, P., Grob, M., Padovani, R., Sindhushyana, N., & Viterbi, A. (2000). CDMA/HDR: A bandwidth efficient high speed wireless data service for nomadic users. IEEE Communications Magazine, 38(7), 70–77.

    Article  Google Scholar 

  29. Liu, Q., Zhou, S., & Giannakis, G. B. (2004). Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications, 3(5), 1746–1755.

    Article  Google Scholar 

  30. Wu, D., & Ci, S. (2006). Cross-layer design for combining adaptive modulation and coding with hybrid ARQ. In Proceedings of the 2006 international conference on wireless communications and mobile computing (pp. 147–152). ACM.

  31. Goldsmith, A. J., & Chua, S.-G. (1998). Adaptive coded modulation for fading channels. IEEE Transactions on Communications, 46(5), 595–602.

    Article  Google Scholar 

  32. Huang, C. T., Matthews, M., Ginley, M., Zheng, X., Chen, C., & Chang, M. (2007). Efficient and secure multicast in wirelessman: A cross-layer design. Journal of Communications Software and Systems, 3(3), 199–206.

    Google Scholar 

  33. Chuang, I., Hsieh, C. T., Kuo, Y. H., et al. (2011). An adaptive cross-layer design approach for network security management. In 13th international conference on advanced communication technology (ICACT), 2011 (pp. 1085–1089). IEEE.

  34. Xiao, Y., Zhang, Y., Nolen, M., Deng, J. H., & Zhang, J. (2011). A cross-layer approach for prioritized frame transmissions of MPEG-4 over the IEEE 802.11 and IEEE 802.11 e wireless local area networks. IEEE Systems Journal, 5(4), 474–485.

    Article  Google Scholar 

  35. Zheng, H., & Viswanathan, H. (2003). Optimizing TCP performance with hybrid ARQ and scheduler. In: 14th IEEE proceedings on personal, indoor and mobile radio communications, 2003. PIMRC 2003 (Vol. 2, pp. 1785–1789). IEEE.

  36. Babulal, K. S., Tewari, R. R., et al. (2011). Cross layer design for cooperative transmission in wireless sensor networks. Wireless Sensor Network, 3(06), 209.

    Article  Google Scholar 

  37. Luo, C., Yu, F. R., Ji, H., & Leung, V. (2010). Cross-layer design for TCP performance improvement in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(5), 2485–2495.

    Article  Google Scholar 

  38. Camp, J., & Knightly, E. (2010). Modulation rate adaptation in urban and vehicular environments: Cross-layer implementation and experimental evaluation. IEEE/ACM Transactions on Networking, 18(6), 1949–1962.

    Article  Google Scholar 

  39. Jurdak, R. (2007). Wireless ad hoc and sensor networks: A cross-layer design perspective. Berlin: Springer.

    Google Scholar 

Download references

Acknowledgments

The second author of this article is would like to thank DST(Department of Science and Technology) for their partial support in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, T.K., Tripathi, S. Buffer Aware Medium Access Control: A Cross Layer Approach. Wireless Pers Commun 91, 525–539 (2016). https://doi.org/10.1007/s11277-016-3474-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3474-7

Keywords

Navigation