Skip to main content
Log in

Design and Power Optimization of High-Speed Pipelined ADC with Programmable Gain Amplifier for Wireless Receiver Applications

  • Special Issue 'Inventive Network Structures for Next Generation Wireless...
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes a 10-bit 100 MS/s 20 MHz low power pipelined analog-to-digital converter (ADC) with switched capacitor based programmable gain amplifier (PGA) suitable for wireless receiver applications. In the proposed ADC the double loading problem caused in the first stage of 10-bit pipelined ADC is avoided. In order to minimize the power consumption, split-capacitor sharing correlated double sampling and op-amp sharing technique has been used. Using the technique, low-gain operational amplifiers (op-amps) can be employed to implement a low-power pipelined ADC. Switched capacitor topology based PGA occupies an area of 0.0031 mm2. Switched capacitor topology based PGA with the integration of 10-bit pipelined ADC consumes 25.54 mW of power at 100 MS/s from a 1.8 V power supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nagaraj, K., Singhal, K., Viswauathan, T. R., & Vlach, J. (2005). Reduction of the finite gain effect in switched-capacitor filters. Electronics Letters, 21, 644–645.

    Article  Google Scholar 

  2. Li, J., & Moon, U. K. (2004). A 1.8 V 67 mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique. IEEE Journal of Solid-State Circuits, 39(9), 1468–1476.

    Article  Google Scholar 

  3. Gregoire, B. R., & Moon, U. K. (2008). An over-60 dB true rail-to-rail performance using correlated level shifting and an op-amp with only 30 dB loop gain. IEEE Journal of Solid-State Circuits, 43(12), 2620–2630.

    Article  Google Scholar 

  4. Koo, Y.-J., Li, J., Lee, B. & Moon, U.-K. (2007). Low-power and high-speed pipelined ADC using time-aligned CDS technique. In IEEE custom intergrated circuits conference (CICC) (pp. 321–324)

  5. Lin, J.-F., Chang, S.-J., Liu, C.-C., & Huang, C.-H. (2010). A 10-bit 60 MS/s low power pipelined ADC with split capacitor CDS technique. IEEE Transactions on Circuits and Systems II, Express Briefs, 57(3), 163–167.

    Article  MathSciNet  Google Scholar 

  6. Waltari, M., & Halonen, K. A. I. (2001). 1-V 9-bit pipelined switched-op-amp ADC. IEEE Journal of Solid-State Circuits, 36(1), 129–134.

    Article  Google Scholar 

  7. Nagaraj, K., Fetterman, H. S., Anidjar, J., Lewis, S. H., & Renninger, R. G. (1997). A 250-mW, 8-b, 52-Msample/s parallel-pipelined A/D converter with reduced number of amplifiers. IEEE Journal of Solid-State Circuits, 32(3), 312–320.

    Article  Google Scholar 

  8. Kim, H.-C., Jeong, D.-K., & Kim, W. (2006). A partially switched-op-amp technique for high-speed low-power pipelined analog-to-digital converters. IEEE Transactions Circuits Systems I, Regular Papers, 53(4), 795–801.

    Article  MathSciNet  Google Scholar 

  9. Chiu, Y., Gray, P. R., & Nikolic, B. (2004). A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR. IEEE Journal of Solid-State Circuits, 39(12), 2139–2151.

    Article  Google Scholar 

  10. Yu, P. C., & Lee, H.-S. (1996). 2.5-V, 12-b, 5-Msamples/s pipelined CMOS ADC. IEEE Journal of Solid-State Circuits, 31(12), 1854–1861.

    Article  Google Scholar 

  11. Ryu, S.-T., Song, B.-S., & Bacrania, K. (2007). A 10-bit 50-MS/s pipelined ADC with op-amp current reuse”. IEEE Journal of Solid-State Circuits, 42(3), 475–485.

    Article  Google Scholar 

  12. Kim, M.-Y., Kim, J., Lee, T., & Kim, C. (2008). 10-bit 100MS/s CMOS pipelined A/D converter with 0.59 pJ/conversion-step. In IEEE Asian solid-state circuits conference (pp. 65–68).

  13. Li, Jian, Zeng, Xiaoyang, Xie, Lei, Chen, Jun, Zhang, Jianyun, & Guo, Yawei. (2008). A 1.8-V 22-mW 10-bit 30-MS/s pipelined CMOS ADC for low-power sub-sampling applications. IEEE Journal of Solid-State Circuits, 43(2), 321–329.

    Article  Google Scholar 

  14. Lee, Byung-Geun, Min, Byung-Moo, Manganaro, Gabriele, & Valvano, Jonathan W. (2008). A 14-b 100-MS/s pipelined ADC with a merged SHA and first MDAC. IEEE Journal of Solid State Circuits, 43(12), 2613–2619.

    Article  Google Scholar 

  15. Wang, Z., Wang, M., Gu, W., Chen, C., Ye, F., & Ren, J. (2013). A high-linearity pipelined ADC with Op-amp split-sharing in a combined front-end of S/H and MDAC1. IEEE Transactions on Circuits and Systems, 60(11), 2834–2844.

    Article  Google Scholar 

  16. Woo, J.-K., Lee, H., Kim, H.-C., Jeong, D.-K., & Kim, S. (2014). 1.2 V 10-bit 75 MS/s pipelined ADC with phase-dependent gain-transition CDS. IEEE Transactions on VLSI Systems, 22(3), 585–592.

    Article  Google Scholar 

  17. Shylu, D. S., & Jackuline Moni, D. (2012). Design of 10 bit 60 MSPS low power pipelined ADC. CiiT International Journal of Programmable Devices Circuits and Systems, 14(4), 741–746.

    Google Scholar 

  18. Behnoosh Rahmatian and Shahriar Mirabbasi. (2007). A low-power 75 dB digitally programmable variable-gain amplifier in 0.18 μm CMOS. Canadian Journal of Electrical and Computer Engineering, 32(4), 181–186.

    Article  Google Scholar 

  19. Ta, C. M., Yong, C. H., Yeoh, W. G. (2005). A 2.7 mW, 0.064 mm2 linear-in-dB VGA with 60 dB tuning range, 100 MHz bandwidth, and two DC offset cancellation loops. In: IEEE international workshop on radio-frequency integration technology (pp. 74–77).

  20. Hsu, C.-C., & Wu, J.-T. (2002). A 125 MHz-86 dB IM3 programmable-gain amplifier. In Symposium on VLSl circuits digest of technical papers, (pp. 32–35).

  21. Hsu, C.-C., & Wu, J.-T. (2003). A highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier. IEEE Journal of Solid-State Circuits, 38(10), 1663–1670.

    Article  Google Scholar 

  22. Nguyen, H.-H., Nguyen, H.-N., Lee, J.-S., & Lee, S.-G. (2009). A binary-weighted switching and reconfiguration-based programmable gain amplifier. IEEE Transactions on Circuits and Systems, 56(9), 699–703.

    Article  Google Scholar 

  23. Kuo, C.-H., Kuo, T.-H., & Wen, K.-L. (2010). Bias-and-input interchanging technique for cyclic/pipelined ADCs With opamp sharing. IEEE Transactions on circuits and systems-II, 57(3), 168–172.

    Article  Google Scholar 

  24. Miki, Takuji, Morie, Takashi, Ozeki, Toshiaki, & Dosho, Shiro. (2012). An 11-b 300-MS/s double-sampling pipelined ADC with on-chip digital calibration for memory effects. IEEE Journal of Solid-State Circuits, 47(11), 2773–2782.

    Article  Google Scholar 

  25. Shylu, D. S., Jackuline, D., Neenu, M., & Francis, B. (2014). Design and analysis of low power pseudo differential class-AB telescopic operational amplifier. International Journal of Research in Engineering and Technology (IJRET), 3(7), 243–248.

    Article  Google Scholar 

  26. Sumanen, L., Waltari, M., Hakkarainen, V., & Halonen, K. (2002). CMOS dynamic comparators for pipeline A/D converters. IEEE International Symposium on Circuits and Systems, 5, V-157–V-160.

    Article  Google Scholar 

  27. Agrez, D. (2007). Reduction of the conversion time of the non-uniform differential tracking A/D converter. In IMTC 2007-instrumentation and measurement technology conference Warsaw, Poland, (Vol. 1–3, pp. 1–4).

Download references

Acknowledgments

The authors are grateful to the management of Karunya University for providing necessary facilities in VLSI laboratory to carryout this research work. The authors would like to thank Ms. Anitha, Ms. Neenu for their help in working with the CADENCE software tool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jackuline Moni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shylu, D.S., Moni, D. & Nivetha, G. Design and Power Optimization of High-Speed Pipelined ADC with Programmable Gain Amplifier for Wireless Receiver Applications. Wireless Pers Commun 90, 657–678 (2016). https://doi.org/10.1007/s11277-016-3186-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3186-z

Keywords

Navigation