Skip to main content
Log in

On Demand Priority Packet Forwarding for TCP Performance Enhancement in Cognitive Mobile IP Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Spectrum mobility packet drops due to dynamic channel handover in optimized cognitive mobile IP leads to end-to-end connection disruption and severe performance degradation in transmission control protocol (TCP). In traditional mobile IP, buffered packet drops in between base station and the mobile node are only due to node mobility and network congestion. To date, number of packet buffering and forwarding mechanisms were proposed to reduce the node mobility and buffer overflow packet drops. But, dynamic spectrum access in cognitive mobile IP introduces spectrum mobility packet drops apart from node mobility and network congestion. Hence, it is significant to enhance the existing mobile IP to support the spectrum handover framework and reduce spectrum mobility packet drops during primary user (PU) active in the current cognitive radio channel. In this work, on-demand priority packet forwarding with spectrum handover support is proposed to reduce the packet drops due to spectrum mobility, node mobility and network congestion. In addition, adaptive power control algorithm is proposed to reduce the collisions due to hidden PU receivers at edge PU coverage area. Experimental results disclose that the performance of TCP with proposed on-demand priority packet forwarding outperforms the existing packet buffering mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chun, H., & La, R. J. (2013). Secondary spectrum trading—auction-based framework for spectrum allocation and profit sharing. IEEE/ACM Transactions on Networking, 21(1), 176–189.

    Article  Google Scholar 

  2. Sengupta, S., & Subbalakshmi, K. P. (2013). Open research issues in multi-hop cognitive radio networks. IEEE Communications Magazine, 51(4), 168–176.

    Article  Google Scholar 

  3. Khalife, H., Malouch, N., & Fdida, S. (2009). Multihop cognitive radio networks: To route or not to route. IEEE Network, 23(4), 20–25. doi:10.1109/MNET.2009.5191142.

    Article  Google Scholar 

  4. Devroye, N., Vu, M., & Tarokh, V. (2008). Cognitive radio networks. IEEE Signal Processing Magazine, 25(6), 12–23. doi:10.1109/MSP.2008.929286.

    Article  Google Scholar 

  5. Baykas, T., Kasslin, M., Cummings, M., Kang, H., Kwak, J., Paine, R., et al. (2012). Developing a standard for TV white space coexistence: Technical challenges and solution approaches. IEEE Wireless Communications, 19(1), 10–22.

    Article  Google Scholar 

  6. Tandra, R., Mishra, S. M., & Sahai, A. (2009). What is a spectrum hole and what does it take to recognize one? Proceedings of the IEEE, 97(5), 824–848.

    Article  Google Scholar 

  7. Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Elsevier Journal of Physical Communications, 4(1), 26–39.

    Article  Google Scholar 

  8. Bian, K., Park, J. M., & Chen, R. (2011). Control channel establishment in cognitive radio networks using channel hopping. IEEE Journal on Selected Areas in Communications, 29(4), 689–703.

    Article  Google Scholar 

  9. Lo, B. F., Akyildiz, I. F., & Al-Dhelaan, A. M. (2010). Efficient recovery control channel design in cognitive radio Ad Hoc networks. IEEE Transactions on Vehicular Technology, 59(9), 4513–4526.

    Article  Google Scholar 

  10. Cormio, C., & Chowdhury, K. R. (2010). Common control channel design for cognitive radio wireless ad hoc networks using adaptive frequency hopping. Elsevier Journal of Ad Hoc Networks, 8(4), 430–438.

    Article  Google Scholar 

  11. Perkins, C. E. (1998). Mobile networking through mobile IP. IEEE Internet Computing, 2(1), 58–69.

    Article  Google Scholar 

  12. Perkins, C. E. (1998). Mobile IP. International Journal of Communication Systems, 11, 3–20. doi:10.1002/(SICI)1099-1131(199801/02)11:1<3:AID-DAC351>3.0.CO;2-6.

    Article  Google Scholar 

  13. Perkins, C. E., & Wang, K.-Y. (1999). Optimized smooth handoffs in mobile IP. In Proceedings of IEEE International Symposium on Computers and Communications (pp. 340–346).

  14. Khaled, A., Maree, M., & Gamal, A. (2012). Low latency Handoff by integrating pre-registration with MIFA. The International Arab Journal of Information Technology, 9(2), 142–147.

    Google Scholar 

  15. Cheng, Y., Chou, C., Wu, H., & Chen, G. (2015). A cognitive TCP design for a cognitive radio network with an unstable-bandwidth link. IEEE Transactions on Computers. doi:10.1109/TC.2014.2375186.

    Google Scholar 

  16. Luo, C., Yu, F. R., Ji, H., & Leung, V. C. M. (2010). Cross-layer design for TCP performance improvement in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(5), 2485–2495.

    Article  Google Scholar 

  17. Wang, J., Huang, A., Wang, W., Zhang, Z., & Lau, V. K. N. (2014). On the transmission opportunity and TCP throughput in cognitive radio networks. International Journal of Communication Systems, 27, 303–321. doi:10.1002/dac.2362.

    Article  Google Scholar 

  18. Eom, D. S., Sugano, M., Murata, M., & Miyahara, H. (2000). Performance improvement by packet buffering in mobile IP based networks. IEICE Transactions on Communications, E83-B(11), 2501–2512.

    Google Scholar 

  19. Sally, F., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.

    Article  Google Scholar 

  20. Roh, Y. S., Hur, K., Eom, D.-S., Lee, Y., & Tchah, K. H. (2005). TCP performance enhancement by implicit priority forwarding (IPF) packet buffering scheme for mobile IP based networks. Journal of Communication and Networks, 7(3), 367–376.

    Article  Google Scholar 

  21. Hur, K., Eom, D.-S., Lee, Y.-W., Lee, J.-H., & Kang, S. (2007). Priority forwarding for improving TCP performance in mobile IP based networks with packet buffering. Computer Communications, 30(6), 1337–1349.

    Article  Google Scholar 

  22. Anamalamudi, S., Xu, W., & Liu, X. (2012). Performance enhancement of TCP in mobile IP based networks. In IEEE/ACIS 11th international conference on computer and information science (pp. 88–93).

  23. Sharma, S., Zhu, N., & Chiueh, T. (2004). Low-latency mobile IP handoff for infrastructure-mode wireless LANs. IEEE Journal on Selected Areas in Communications, 22(4), 643–652.

    Article  Google Scholar 

  24. Anamalamudi, S., & Jin, M. (2013). Low rate common control channel based AODV routing protocol for cognitive radio ad-hoc networks. In 5th international conference on ubiquitous and future networks (ICUFN) (pp. 625, 630).

  25. Elmachkour, M., Kobbane, A., Sabir, E., Ben-othman, J., & El koutbi, M. (2014). Data traffic-based analysis of delay and energy consumption in cognitive radio networks with and without resource reservation. International Journal of Communication Systems. doi:10.1002/dac.2764.

    Google Scholar 

  26. Anamalamudi, S., Liu, C., & Jin, M. (2014). Energy efficient CCC based AODV routing protocol for cognitive radio ad-hoc networks. Journal of Communications, 9(2), 107–117.

    Article  Google Scholar 

  27. Guillemin, F., & Boyer, J. (2001). Analysis of the M/M/1 queue with processor sharing via spectral theory. Queueing Systems, 39(4), 377. doi:10.1023/A:1013913827667.

    Article  MATH  MathSciNet  Google Scholar 

  28. Karlin, S., & McGregor, J. (1958). Many server queueing processes with Poisson input and exponential service times. Pacific Journal of Mathematics, 8(1), 87–118. doi:10.2140/pjm.1958.8.87.MR0097132.

    Article  MATH  MathSciNet  Google Scholar 

  29. Fallahi, K., Cheng, C. T., & Fattouche, M. (2012). Robust positioning systems in the presence of outliers under weak GPS signal conditions. IEEE Systems Journal, 6(3), 401–413.

    Article  Google Scholar 

  30. Christian, I., Moh, S., Chung, I., & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114–121.

    Article  Google Scholar 

  31. VINT Group. (1995). \UCB/LBNL/VINT network simulator ns (version2) [online].http://www.isi.edu/nsnam/ns/.

  32. The CMU Monarch Project. (1998). \Wireless and Mobility Extension to ns [online]. http://www.monarch.cs.rice.edu/.

  33. Nekovee, M. (2010). A survey of cognitive radio access to TV white spaces. International Journal of Digital Multimedia Broadcasting, 2010, 1–11.

    Article  Google Scholar 

  34. Lee, P., & Wei, G. (2009). NS2 model for cognitive radio networks routing. In International symposium of computer network and multimedia technology (pp. 1, 4).

  35. Chen, H., & Trajkovic, L. (2002). Simulation of route optimization in mobile IP. In Proceedings of 27th annual IEEE conference on local computer networks (pp. 847, 848).

  36. Zhong, J. (2009). Development of NS-2 based cognitive radio cognitive network simulator. MS Thesis, Michigan Technological University.

Download references

Acknowledgments

This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2015-H8501-15-1019) supervised by the IITP (Institute for Information & Communications Technology Promotion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Moung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anamalamudi, S., Jin, M., Kim, J.M. et al. On Demand Priority Packet Forwarding for TCP Performance Enhancement in Cognitive Mobile IP Networks. Wireless Pers Commun 86, 1947–1970 (2016). https://doi.org/10.1007/s11277-015-3132-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3132-5

Keywords

Navigation