Skip to main content
Log in

Estimation of the Spectrum Sensing for the Cognitive Radios: Test Analysing Using Kalman Filter

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nowadays, the spectrum becomes more crowded and to solve this problem we use the cognitive radio technology, cognitive radio is a promising technology used to improve of spectrum utilization. Among important functions of the cognitive radio is the spectrum sensing. Most of the research works on the spectrum sensing for the cognitive radio networks are considered in a fixed temporal state, they are ignored impact of the mobility of a secondary user. We interested in the concept of the spectrum sensing in real-time. In this paper, we propose an algorithm that examined the impact of the mobility of a secondary user to determine the parameters that affect the spectrum sensing in cognitive radio networks. The performance of the algorithm proposed is evaluated with simulations and results, and of course we will finish by a conclusion and a future perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akyildz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.

    Article  Google Scholar 

  2. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Dissertation, Royal Institute of Technology.

  3. Akyildz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt genera-tion/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  4. Ben Letaief, K., & Zhang, W. (2007). Chapter: Cooperative spectrum sensing. Cognitive wireless communications networks (pp. 115–138). Berlin: Springer.

    Chapter  Google Scholar 

  5. Ghasemi, A., & Sousa, E. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. In: Proceedings of IEEE DySPAN2005 (pp. 131–136).

  6. Zhong, Z., Zheng, P., Jun-Hong, C., Zhijie, S., & Bagtzoglou, A. C. (2011). Scalable localization with mobility prediction for underwater sensor networks. IEEE Transactions on Mobile Computing, 10(3), 335–348.

  7. Hongyang, C., Pei, H., Hing-Cheung, S., Xi, L., & Ping, D. (2008). Mobility-assisted cooperative localization scheme for wireless sensor networks. IEEE military communications conference (MILCOM’2008) (pp. 1–7).

  8. Niculescu, D. (2004). Positioning in ad hoc sensor networks. IEEE Network, 18(4), 24–29.

  9. Yu, Y. H., Sun, C., Qin, N. N., Gao, K., & Chen, D. Z. (2014). CR–RSS location algorithm for primary user in cognitive radio. The Journal of China Universities of Posts and Telecommunications, 21(1), 22–25.

    Article  Google Scholar 

  10. Alexander, W. M., & Kang, G. S. (2009). Impact of mobility on spectrum sensing in cognitive radio networks. In Proceedings of the 2009 ACM workshop on cognitive radio networks.

  11. Angela, S. C., Akyildiz, I. F., & Luigi, P. (2011). Primary-user mobility impact on spectrum sensing in cognitive radio networks. IEEE 22nd international symposium on personal, indoor and mobile radio communications (pp. 451–456).

  12. Fan, B., Ahmed, H. Chapter 1: A survey of mobility models. In Wireless adhoc networks (pp. 1–30).

  13. Kalman, R. E. (1960). A new approach to linear filtering prediction problems. ASME Journal of Fluids Engineering, 82, 34–45.

    Google Scholar 

  14. Yang, B. H., Yang, W. D., Chen, L. G., & Qu, L. (2008). Dynamic optimization of feedforward automatic gauge control based on extended Kalman filter. Journal of Iron and Steel Research International, 15(2), 39–42.

    Article  Google Scholar 

  15. Stéphane, A., Mihai, B. L., & Gilles, B. (2004). Automatic gain control in a Kalman filter based synchronization chaotic receiver. IEEE-Communications June 35, 2004.

  16. Haitao, Z., & Yujiao, Z. (2011). The performance comparison and analysis of extended Kalman filters for GPS/DR navigation. Optik International Journal for Light and Electron Optics, 122(9), 777–781.

  17. Rajat, A. (2013). Doppler utilised Kalman estimation (DUKE) of ionospheric delay for satellite navigation. Advances in Space Research, 51(11), 2171–2180.

  18. Gerasimos, G-R. (2012). Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial vehicles. Robotics and Autonomous Systems, 60(7), 978–995.

  19. Muhammad, L. A., Jaehong, P., Wonsang, H., Hyun-il, K., Jong, H. K., Changhun, L., Kwang, S. K., & Dong-il, D-C. (2010). Sensor data fusion using unscented kalman filter for accurate localization of mobile robots. In Proceedings of international conference on control, automation and systems (pp. 947–952).

  20. Sun, S. L., & Deng, Z. L. (2004). Multi-sensor optimal information fusion Kalman filter. Automatica, 40(6), 1017–1023.

  21. Michael, P., & Phillip A. L. (2003). Kalman filter recipes for real-time image processing. Real-Time Imaging, 433–439.

  22. Abhik, M., Partha, P. A., Nandi, P-K., Pinakpani, P., & Das, J. (2002). Estimation of atmospheric boundary layer using Kalman filter technique. Signal Processing, 1763–1771.

  23. Karline, S., & Marilaure, G. (2011). Estimating marine biogeochemical rates of the carbonate pH system-A Kalman filter tested. Ecological Modelling, 53(1), 1929–1942.

    Google Scholar 

  24. Hasman, A., Jansen, B. H., Landeweerd, G. H., & Van Blokland-Vogelesang, A. W. (1978). Demonstration of segmentation techniques for EEG records. International Journal of Bio-Medical Computing, 9(4), 311–321.

  25. Penczek, P., Grochulski, W., Grzyb, J., & Kowalczyk, M. (1987). The use of a multi-channel Kalman filter algorithm in structural analysis of the epileptic EEG. International Journal Bio-Medical Computing, 20(1–2), 135–151.

  26. Zhiliang, L., Ruqm, Y., Leming, S., Jun, X., Maosen Z., & Qinguang, W. (1991). Valence-state speciation of sulfur by x-ray fluorescence spectrometry and Kalman filtering. Analytlca Chimica Acta, 248(1), 257–261.

  27. Giampaolo, E-D’E. (2012). À la Kalman filtering for metrology tool with application to coordinate measuring machines. IEEE Transactions on Industrial Electronics, 59(11), 4377–4382.

  28. Alireza, J., Delphine, L., & Alain, G. Filtering in finance. Technical article, Wilmott magazine (pp. 1–18).

  29. Andrea, G. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  30. Yong, S. C., Jaekwon, K., Won, Y. Y., & CHung, G. K. (2010). MIMO-OFDM wireless communications with MATLAB. New York :IEEE Press, Wiley (Asia) Pte Ltd.

  31. Shuta, K., Takeo, F., & Osamu, T. (2013). Dynamic spectrum sharing for OFDMA-based multi-hop cognitive radio networks with priority (pp. 1081–1097). Wireless Pers Commun: Springer.

    Google Scholar 

  32. Sohra, S., Mohammed, F., & Abdelmalek, A. (2012). Seamless infrastructure independent multihomed NEMO handoff using effective and timely IEEE 802.21 MIH triggers. International Journal of Wireless and Mobile Networks (IJWMN), 4(3), 119–139.

    Article  Google Scholar 

  33. Su-Wen, W., Jin-kang, Z., Qiu, L., & Zhao, M. (2010). SNR-based weighted cooperative spectrum sensing in cognitive radio networks. The Journal of China Universities of Posts and Telecommunications, 17(2), 1–7.

    Article  Google Scholar 

  34. Digham, F. F., Alouini, M. S., & Simon, M. K. (2003). On the energy detection of unknown signals over fading channels. In Proceedings IEEE international conference on communication (ICC’03) (pp. 3575–3579).

  35. Mohamed, G., Mischa, D., François, M., & Jacques, P. (2006). Cognitive radio: Methods for the detection of free bands. Comptes Rendus Physique, 7(2006), 794–804.

    Google Scholar 

  36. Jana, S., Kai, Z., Wei, C., & Mohapatra, P. (2013). Trusted collaborative spectrum sensing for mobile cognitive radio networks. IEEE Transactions on Information Forensics and Security, 8(9), 1497–1507.

    Article  Google Scholar 

  37. Gradshteyn, I. S., & Ryzhik, I. M. (1994). Table of integrals, series, and products (5th ed.). Waltham: Academic Press.

    MATH  Google Scholar 

  38. Nuttall, A. H. (1975). Some integrals involving the QM function. IEEE Transactions on Information Theory, 21(1), 95–96.

    Article  MATH  MathSciNet  Google Scholar 

  39. Deville, T., Casasola, E., & Clanzig, K. (2010). Etude de cas: Filtre de Kalman. http://rose.eu.org/2010/tag/kalman/page/2/.

  40. Philippe, G. (2012). GLO-4001/GLO-7021 Introduction à la robotique mobile Mise en pratique du filtre de Kalman. version 0.1, 22 November 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Errachid Adardour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adardour, H.E., Meliani, M. & Hachemi, M.H. Estimation of the Spectrum Sensing for the Cognitive Radios: Test Analysing Using Kalman Filter. Wireless Pers Commun 84, 1535–1549 (2015). https://doi.org/10.1007/s11277-015-2701-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2701-y

Keywords

Navigation