Skip to main content
Log in

A Simple but Effective Contention Aware and Adaptive Back-off Mechanism for Improving the Performance of IEEE 802.11 DCF

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In IEEE 802.11 standard, Distributed Coordination Function (DCF) is used as a primary medium access mechanism to share the common wireless medium. It is now well established that performance of the DCF degrades, especially when there is a large number of stations in the network contending for the wireless medium. This occurs due to the traditional parameter setting of its Binary Exponential Back-off (BEB) mechanism, which is used for collision avoidance. Therefore, in this paper, we propose an effective Contention Window (CW) and Contention Slot Selection (CSS) mechanism, named Contention Aware and Adaptive Back-off (CAAB) mechanism, to enhance performance of the IEEE 802.11 DCF. This mechanism differs from the standard back-off mechanism in two ways. First, contention window is not reset after successful transmission. Instead, stations will be allowed to go back to the possible preceding back-off stage after successful packet transmission in order to maintain the CW selection as a continuous process. Second, back-off timer is also not uniformly chosen in the respective CW interval. Instead to it, a non-uniform CSS distribution is used to select back-off timer in order to make the selection process adaptive according to the contention level. A Markov chain model is developed to derive the throughput and delay performance of the DCF based on CAAB mechanism. Finally, performance of our mechanism is evaluated with respect to the BEB and Double Increment Double Decrement mechanisms. Simulation results show that the proposed mechanism outperforms the referenced mechanisms in almost each count.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Nov. 1997. P802.11.

  2. Wu, H., Lin, Y., Cheng, S., Peng, Y., & Long, K. (2003). IEEE 802.11 distributed coordination function: Enhancement and analysis. Journal of Computer Science and Technology, 18(5), 607–614.

    Article  MATH  Google Scholar 

  3. Yun, L., Ke-Ping, L., Wei-Liang, Z., & Feng-Rui, Y. (2005). RWBO (pd, w): A novel back-off algorithm for IEEE 802.11 DCF. Journal of Computer Science & Technology, 20(2), 276–281.

    Article  Google Scholar 

  4. Anouar, H., & Bonnet, C. (2007). Optimal constant window back-off scheme for IEEE 802.11 DCF in single-hop wireless networks under finite load conditions. Wireless Personal Communications. doi:10.1007/s11277-007-9329-5.

    Google Scholar 

  5. Al-Hubaishi, M., Alahdal, T., Alsaqour, R., Berqia, A., Abdelhaq, M., & Alsaqour, O. (2013). Enhanced binary exponential back-off algorithm for fair channel access in the IEEE 802.11 medium access control protocol. International Journal of Communication. doi:10.1002/dac.2604.

    Google Scholar 

  6. Lukyanenko, A., Gurtov, A., & Morozov, E. (2012). An adaptive back-off protocol with Markovian contention window control. Communications in Statistics-Simulation and Computation, 41(7), 1093–1106.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cali, F., Conti, M., & Gregori, E. (2000). IEEE 802.11 protocol: design and performance evaluation of an adaptive back-off mechanism. IEEE Journal on Selected Areas in Communications, 18(9), 1774–1786.

    Article  Google Scholar 

  8. Hong, K., Lee, S., Kim, K., & Kim, Y. (2012). Channel condition based contention window adaptation in IEEE 802.11 WLANs. IEEE Transactions on Communications, 60(2), 469–478.

    Article  MathSciNet  Google Scholar 

  9. Chun, S., Xianhua, D., Pingyuan, L., & Han, Z. (2012). Adaptive access mechanism with optimal contention window based on node number estimation using multiple thresholds. IEEE Transactions on Wireless Communications, 12(6), 2046–2055.

    Article  Google Scholar 

  10. Kim, S. M., & Cho, Y. J. (2006). A distributed collision resolution scheme for improving the performance in wireless LANs. Computer Networks, 50(3), 289–300.

    Article  MATH  Google Scholar 

  11. Bruno, R., Conti, M., & Gregori, E. (2001). A simple protocol for the dynamic tuning of the back-off mechanism in IEEE 802.11 networks. Computer Networks, 37(1), 33–40.

    Article  Google Scholar 

  12. Colbourn, C. J., Cui, M., Lloyd, E. L., & Syrotiuk, V. R. (2007). A carrier-sense multiple access protocol with power back-off (CSMA/PB). Ad Hoc Networks, 5(8), 1233–1250.

    Article  Google Scholar 

  13. Bononi, L., Conti, M., & Donatieello, L. (2000). Design and performance evaluation of a distributed contention control (DCC) mechanism for IEEE 802.11 wireless local area networks. Journal of Parallel and Distributed Computing, 60(4), 407–430.

    Article  Google Scholar 

  14. Li, B., & Battiti, R. (2007). Achieving optimal performance in IEEE 802.11 wireless LANs with the combination of link adaptation and adaptive back-off. Computer Networks, 51(6), 1574–1600.

    Article  MATH  Google Scholar 

  15. Wu, C. M., Hou, T. H., Leou, M. L., Liaw, Y. C., & Chan, M. C. (2010). Adaptive back-off scheme for ad-hoc networks based on. International Journal of Communication Systems, 23(12), 1632–1650.

    Article  Google Scholar 

  16. Ke, C. H., Wei, C. C., Lin, K. W., & Ding, J. W. (2011). A smart exponential-threshold-linear back-off mechanism for IEEE WLANs. International Journal of Communication Systems, 24(8), 1033–1048.

    Article  Google Scholar 

  17. Wattanamongkhol, N., Srichavengsup, W., Nakpeerayuth, S., & Wuttisiittikulkij, L. (2007). Performance analysis of modified back-off algorithm in IEEE 802.11 networks. In Proceedings of 3rd IEEE/IFIP international conference, Tashkent (pp. 1–5).

  18. Weng, C. E., & Chen, C. Y. (2012). The performance study of optimal contention window for IEEE 802.11 access control. In Proceedings of IEEE innovative mobile and internet services in ubiquitous computing (IMIS), Palermo (pp. 481–484).

  19. Chatzimisios, P., Vitsas, V., Boucouvalas, A. C., & Tsoulfa, M. (2007). Achieving performance enhancement in IEEE 802.11 WLANs by using the DIDD back-off mechanism. International Journal of Communication Systems, 20(1), 23–41.

    Article  Google Scholar 

  20. Pudusaini, S., & Shin, S. (2012). Cross-layer performance analysis of CSMA/iCA based Wireless Local Area Network. Wireless Personal Communications, 67(1), 63–77.

    Google Scholar 

  21. Maltchanov, D., & Koucheryavy, Y. (2014). Cross-layer modelling of wireless channels: An overview of basic principles. Wireless Personal Communications. doi:10.1007/s11277-012-0896-8.

    Google Scholar 

  22. Tian, G., & Tian, Y. C. (2012). Modelling and performance evaluation of the IEEE 802.11 DCF for real-time control. Computer Networks, 56(1), 435–447.

    Article  Google Scholar 

  23. Bianchi, G. (1998). IEEE 802.11—Saturation throughput analysis. IEEE Communications Letters, 2(12), 318–320.

    Article  Google Scholar 

  24. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  25. Wu, H., Peng, Y., Long, K., Cheng, S., & Ma, J. (2002). Performance of reliable transport protocol over IEEE 802.11 wireless LAN: Analysis and enhancement. In Proceedings of the 21st annual joint conference of the IEEE Computer and Communications Societies (INFOCOM 2002), New York, NY, (vol. 2, pp. 599–607).

  26. Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2005). Performance analysis of the IEEE 802.11 MAC protocol for wireless LANs. International Journal of Communication Systems, 18(6), 545–569.

    Article  Google Scholar 

  27. Ziouva, E., & Antonakopoulos, T. (2003). The IEEE 802.11 distributed coordination function in small-scale ad-hoc wireless LANs. International Journal of Wireless Information Networks, 10(1), 1–15.

    Article  Google Scholar 

  28. Maadani, M., & Moamedi, S. A. (2013). A simple and comprehensive saturation packet delay model for wireless industrial networks. Wireless Personal Communications. doi:10.1007/s11277-013-1510-4.

    Google Scholar 

  29. Lee, S. Y., Shin, Y. S., Lee, K. W., & Ahn, J. S. (2013). Performance analysis of extended non-overlapping binary exponential back-off algorithm over IEEE 802.15.4. Telecommunication Systems. doi:10.1007/s11235-013-9749-3.

    Google Scholar 

  30. Maadani, M., & Moamedi, S. A. (2013). A simple and closed form access delay model for reliable IEEE 802.11 based wireless industrial networks. Wireless Personal Communications. doi:10.1007/s11277-013-1465-5.

    Google Scholar 

  31. Senthilkumar, D., & Krishnan, A. (2011). Enhancement to IEEE 802.11 distributed coorination function to reduce packet retrnsmissions under imperfect channel conditions. Wireless Personal Communications. doi:10.1007/s11277-011-0320-9.

    Google Scholar 

  32. Song, N., Kwak, B., Song, J., & Miller, L. E. (2003). Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease back-off algorithm. In Proceedings of the IEEE VTC’03-Spring 4 (pp. 2775–2778).

  33. Chen, W. T. (2008). An effective medium contention method to improve the performance of IEEE 802.11. Wireless Networks, 14(6), 769–776.

    Article  Google Scholar 

  34. Rajagopalan, N., & Mala, C. (2012). An efficient and dynamic back-off algorithm for IEEE 802.11 networks. International Journal of System Assurance Engineering and Management, 3(2), 73–83.

    Article  Google Scholar 

  35. Pang, Q., Liew, S. C., Lee, J. Y. B., & Leung, V. C. M. (2004). Performance evaluation of an adaptive back-off scheme for WLAN. Wireless Communication and Mobile Computing, 4(8), 867–879.

    Article  Google Scholar 

  36. Yun, L., Ke-Ping, L., Wei-Liang, Z., & Qian-Bin, C. (2006). A novel random back-off algorithm to enhance the performance of IEEE 802.11 DCF. Wireless Personal Communications, 36(1), 29–44.

    Article  Google Scholar 

  37. Pudasaini, S., Kang, M., Shin, S., & Copeland, J. A. (2010). COMIC: Intelligent contention window control for distributed medium access. IEEE Communications Letters, 14(7), 656–658.

    Article  Google Scholar 

  38. YuZhong, C., CaiHong, K., YanHui, G., & Feng, L. (2004). Performance analysis and improvement of IEEE 802.11 WLAN. In Proceedings of 10th Asia-Pacific conference on communications and 5th international symposium on multi-dimensional mobile communications (vol. 1, pp. 147–151).

  39. Shin, H. J., Shin, D. R., & Youn, H. Y. (2004). An efficient back-off scheme for IEEE 802.11 DCF. In Lecture notes in computer science (pp. 180–193).

  40. Kuo, C. Y., Huang, Y. H., & Lin, K. C. (2012). Performance enhancement of IEEE 802.11 DCF using novel back-off algorithm. EURASIP Journal on Wireless Communications and Networking, 1, 274.

    Article  Google Scholar 

  41. Hu, C., Kim, H., & Hou, J. C. (2008). Short-term non-uniform access in IEEE 802.11-compliant WLANs: A study on its impact on the saturation performance. Computer Networks, 52(1), 61–76.

    Article  MATH  Google Scholar 

  42. Dehbi, Y., Benaboud, H., & Mikou, N. (2013). A geometric back-off time distribution of IEEE 802.11 DCF: An analytical study. International Journal of Communication Networks and Information Security (IJCNIS), 5(3), 192–200.

    Google Scholar 

  43. Robertazzi, T. G. (2000). Computer networks and systems. New York: Springer.

    Book  Google Scholar 

  44. Bianchi, G., & Tinnirello, I. (2005). Remarks on IEEE 802.11 DCF performance analysis. IEEE Communications Letters, 9(8), 765–767.

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper was supported by Council of Scientific and Industrial Research (CSIR) New Delhi, India, under Grant JRF and SRF-09/263(0737)/2008-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Lobiyal, D.K. A Simple but Effective Contention Aware and Adaptive Back-off Mechanism for Improving the Performance of IEEE 802.11 DCF. Wireless Pers Commun 83, 1801–1841 (2015). https://doi.org/10.1007/s11277-015-2477-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2477-0

Keywords

Navigation