Skip to main content
Log in

Improved Signal Detection of Wireless Relaying Networks Employing Space-Time Block Codes Under Imperfect Synchronization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Deployment of Space-Time Block Code (STBC) over wireless relaying communication networks has been identified as one of the most promising techniques because of its potential to support high-performance and high data-rate for wireless communication technologies of the future. It is called Distributed-STBC (D-STBC) as it uses clients’ nodes as relaying nodes to form a virtual Multiple-Input Multiple-Output (MIMO) channel. However, this requires perfect synchronization among the relaying nodes. Unfortunately, as this is impossible to achieve in real world networks, the structure of the code matrix is compromised causing the channel to appear dispersive. This paper firstly derives a general model of D-STBC systems which will then be used to show the effects of imperfect synchronization on such schemes. Then, it highlights the majority of the schemes used to mitigate the performance degradation due to the asynchronism. In addition, it suggests some schemes that could be considered when conditions of imperfect synchronization exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Molisch, A. F. (2010). Wireless communications (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  2. Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  3. Telatar, E. (1999). Capacity of multi-antenna gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  Google Scholar 

  4. Oestges, C., & Clerckx, B. (2007). MIMO wireless communications: From real-world propagation to space-time code design (1st ed.). Massachusetts: Academic Press.

    Google Scholar 

  5. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  6. Liu, K. J. R. (2009). Cooperative communications and networking. Cambridge: Cambridge University Press.

  7. Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.

    Article  MATH  MathSciNet  Google Scholar 

  8. Jing, Y., & Hassibi, B. (2006). Distributed space-time coding in wireless relay networks. IEEE Transactions on Wireless Communications, 5(12), 3524–3536.

    Article  Google Scholar 

  9. Jing, Y., & Jafarkhani, H. (2007). Using orthogonal and quasi-orthogonal designs in wireless relay networks. IEEE Transactions on Information Theory, 53(11), 4106–4118.

    Article  MATH  MathSciNet  Google Scholar 

  10. Yiu, S., Schober, R., & Lampe, L. (2006). Distributed space-time block coding. IEEE Transactions on Communications, 54(7), 1195–1206.

    Article  Google Scholar 

  11. Wei, S., Goeckel, D. L., & Valenti, M. C. (2006). Asynchronous cooperative diversity. IEEE Transactions on Wireless Communications, 5(6), 1547–1556.

    Article  Google Scholar 

  12. Zheng, F., Burr, A. G., & Olafsson, S. (2009). Signal detection for distributed space-time block coding: 4 relay nodes under quasi-synchronisation. IEEE Transactions on Communications, 57(5), 1250–1255.

    Article  Google Scholar 

  13. Jia, Y., Andrieu, C., Piechocki, R. J., & Sandell, M. (2005). Gaussian approximation based mixture reduction for near optimum detection in MIMO systems. IEEE Communications Letters, 9(11), 997–999.

    Article  Google Scholar 

  14. Nguyen, T., Berder, O., & Sentieys, O. (2008). Impact of transmission synchronization error and cooperative reception techniques on the performance of cooperative MIMO systems. In IEEE international conference on communications, pp. 4601–4605.

  15. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—part i: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  16. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—part ii: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.

    Article  Google Scholar 

  17. Maadi, S., & Hamdi, N. (2011). Joint power allocation and beamforming for cooperative networks. International Journal of Communications, Network and System Sciences, 4(7), 447–451.

    Article  Google Scholar 

  18. Xu, L., & Zhang, H. (2011). Optimum relay location in cooperative communication networks with single af relay. International Journal of Communications, Network and System Sciences, 4(3), 147–151.

    Article  Google Scholar 

  19. Zhang, C., Zhang, J., Wang, W., & Wei, G. (2009). Distributed space-time decoding with two-pilot channel estimation for wireless relay networks. In IEEE international symposium on personal. Indoor and mobile radio communications, PIMRC.

  20. Gao, F., Cui, T., & Nallanathan, A. (2008). On channel estimation and optimal training design for amplify and forward relay networks. IEEE Transactions on Wireless Communications, 7(5), 1907–1916.

    Article  Google Scholar 

  21. Wu, Y., & Patzold, M. (2009). Parameter optimization for amplify-and-forward relaying systems with pilot symbol assisted modulation scheme. Wireless Sensor Network, 1(1), 15–21.

    Article  Google Scholar 

  22. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MATH  MathSciNet  Google Scholar 

  23. Vucetic, B. (2003). Space-time block codes (1st ed.). New Jersey: Wiley.

    Book  Google Scholar 

  24. El Astal, M.-T. O., & Abu-Hudrouss, A. M. (2011). Sic detector for 4 relay distributed space-time block coding under quasi-synchronization. IEEE Communications Letters, 15(10), 1056–1058.

    Article  Google Scholar 

  25. Zheng, F., Burr, A. G., & Olafsson, S. (2008). Near-optimum detection for distributed space-time block coding under imperfect synchronization. IEEE Transactions on Communications, 56(11), 1795–1799.

    Article  Google Scholar 

  26. Zheng, F.-C., Burr, A. G., & Olafsson, S. (2007). Distributed space-time block coding for 3 and 4 relay nodes: Imperfect synchronisation and a solution. In IEEE international symposium on personal, indoor and mobile radio communications, PIMRC, pp. 1596–1601.

  27. Elazreg, A. M., Mannai, U. N., & Chambers, J. A. (2010). Distributed cooperative space-time coding with parallel interference cancellation for asynchronous wireless relay networks. In SoftCOM 2010—International conference on software, telecommunications and computer networks, pp. 360–364.

  28. El Astal, M. T. O., & Olivier, J. C. (2013). Distributed closed-loop extended orthogonal STBC: Improved performance in imperfect synchronization. In IEEE international symposium on personal, indoor and mobile radio communications, PIMRC, pp. 1941–1945.

  29. Elazreg, A. M., & Chambers, J. A. (2009). Closed-loop extended orthogonal space time block coding for four relay nodes under imperfect synchronization. In IEEE workshop on statistical signal processing proceedings, pp. 545–548.

  30. Yu, Y., Keroueden, S., & Yuan, J. (2006). Closed-loop extended orthogonal space-time block codes for three and four transmit antennas. IEEE Signal Processing Letters, 13(5), 273–276.

    Article  Google Scholar 

  31. Elazreg, A. M., Abdurahman, F. M., & Chambers, J. A. (2009) Distributed closed-loop quasi-orthogonal space time block coding with four relay nodes: Overcoming imperfect synchronization. In WiMob 2009—5th IEEE international conference on wireless and mobile computing networking and communication, pp. 320–325.

  32. Toker, C., Lambotharan, S., & Chambers, J. A. (2004). Closed-loop quasi-orthogonal STBCs and their performance in multipath fading environments and when combined with turbo codes. IEEE Transactions on Wireless Communications, 3(6), 1890–1896.

    Article  Google Scholar 

  33. Wang, X., & Wu, Z. (2009). Interference cancellation technique under imperfect synchronization in cellular systems. Journal of Shanghai University, 13(5), 379–383.

    Article  Google Scholar 

  34. Xin, W., & Zhuo, W. (2009). Pic detector for joint distributed STBC under imperfect synchronization. In Proceedings—5th international conference on wireless communications, networking and mobile computing: WiCOM 2009.

  35. Xu, J., Choi, J. Y., & Seo, J. (2008). Distributed space-time coding and equalization for cooperative cellular communication system. IEEE Transactions on Consumer Electronics, 54(1), 47–51.

    Article  Google Scholar 

  36. Zheng, F., Burr, A. G., & Olafsson, S. (2007). A simple optimum detector for distributed space-time block coding under imperfect synchronisation. In IEEE workshop on signal processing advances in wireless communications, SPAWC.

  37. Zheng, F., Burr, A. G., & Olafsson, S. (2007). Pic detector for distributed space-time block coding under imperfect synchronisation. Electronics Letters, 43(10), 580–582.

    Article  Google Scholar 

  38. El Astal, M.-T., & Abu-Hudrouss, A. M. (2012). Generalized pic detector for distributed STBC under quasi-synchronization. Wireless Engineering and Technology, 3(1), 25–29.

    Article  Google Scholar 

  39. Su, W., & Xia, X. (2004). Systematic design of complex orthogonal space-time block codes with high rates. 2004 IEEE Wireless Communications and Networking Conference, WCNC 2004, 2004(3), 1442–1445.

    Google Scholar 

  40. Zheng, F., Burr, A. G., & Olafsson, S. (2007). Distributed space-time block coding with incremental relay: Performance improvement under imperfect synchronisation. In 2007 16th IST mobile and wireless communications summit.

  41. Cui, T., Gao, F., Ho, T., & Nallanathan, A. (2009). Distributed space-time coding for two-way wireless relay networks. IEEE Transactions on Signal Processing, 57(2), 658–671.

    Article  MathSciNet  Google Scholar 

  42. Mannai, U. N., Abdurahman, F. M., Elazreg, A. M., & Chambers, J. A. (2011). Orthogonal space time block coding for two-way wireless relay networks under imperfect synchronization. In IWCMC 2011—7th international wireless communications and mobile computing conference, pp. 1694–1697.

  43. El Astal, M. O., & Olivier, J. C. (2012). Distributed orthogonal STBC for amplify and forward cooperative network under imperfect synchronization. In International conference on communication technology proceedings, ICCT, pp. 364–368.

  44. El Astal, M.-T., Salmon, B. P., & Olivier, J. C. (2014). Distributed space-time block coding for two-way wireless relaying networks: Improved performance under imperfect synchronization. Accepted for publication in IEEE WCNC 2014.

  45. Bolcskei, H. (2006). MIMO-OFDM wireless systems: Basics, perspectives, and challenges. IEEE Wireless Communications, 13(4), 31–37.

    Article  Google Scholar 

  46. Esmaiel, H., & Danchi, J. (2013). Image transmission over underwater acoustic environment using OFDM technique with hqam mapper. In Information science and technology (ICIST), 2013 international conference on, pp. 1596–1601.

  47. Logothetis, A., Osseiran, A., & Slimane, S. (2008). Distributed relay diversity systems for OFDM-based networks. International Journal of Communications, Network and System Sciences, 1(3), 215–227.

    Article  Google Scholar 

  48. Shin, O., Chan, A. M., Kung, H. T., & Tarokh, V. (2007). Design of an OFDM cooperative space-time diversity system. IEEE Transactions on Vehicular Technology, 56(4 II), 2203–2215.

    Article  Google Scholar 

  49. Alotaibi, F. T., & Chambers, J. A. (2010). Full-rate and full-diversity extended orthogonal space-time block coding in cooperative relay networks with imperfect synchronization. In ICASSP, IEEE international conference on acoustics, speech and signal processing—Proceedings, pp. 2882–2885.

  50. Alotaibi, F. T., Abdurahman, F., Mannai, U., & Chambers, J. A. (2011). Extended orthogonal space-time block coding scheme in asynchronous two-way cooperative relay networks over frequency-selective fading channels. In 17th DSP 2011 international conference on digital signal processing, proceedings.

  51. Ng, F., & Li, X. (2005). Cooperative STBC-OFDM transmissions with imperfect synchronization in time and frequency. Conference Record - Asilomar Conference on Signals, Systems and Computers, 2005, 524–528.

    Google Scholar 

  52. Manna, M. A., Qaja, W. M., & Chambers, J. A. (2013) Ofdm-based modified quasi-orthogonal space-time scheme for use in asynchronous cooperative networks with relay selection. In 2013 20th international conference on telecommunications, ICT 2013.

  53. Ma, Y., Jiang, H., & Du, S. (2014). Two-way cyclotomic orthogonal space-time transmission scheme for asynchronous cooperative systems. In 2014 international conference on computing, networking and communications, ICNC 2014, pp. 686–690.

  54. Damen, M. O., & Hammons, A. R, Jr. (2007). Delay-tolerant distributed-tast codes for cooperative diversity. IEEE Transactions on Information Theory, 53(10), 3755–3773.

    Article  MathSciNet  Google Scholar 

  55. El Gamal, H., & Damen, M. O. (2003). Universal space-time coding. IEEE Transactions on Information Theory, 49(5), 1097–1119.

    Article  MATH  Google Scholar 

  56. Wu, N., & Gharavi, H. (2010). Asynchronous cooperative mimo systems using a linear dispersion structure. IEEE Transactions on Vehicular Technology, 59(2), 779–787.

    Article  Google Scholar 

  57. Bhatnagar, M. R., HjÞrungnes, A., & Debbah, M. (2010). Delay-tolerant decode-and-forward based cooperative communication over ricean channels. IEEE Transactions on Wireless Communications, 9(4), 1277–1282.

    Article  Google Scholar 

  58. Torbatian, M., & Damen, M. O. (2009). On the design of delay-tolerant distributed space-time codes with minimum length. IEEE Transactions on Wireless Communications, 8(2), 931–939.

    Article  Google Scholar 

  59. Wang, W., Zheng, F., Burr, A., & Fitch, M. (2012). Design of delay-tolerant linear dispersion codes. IEEE Transactions on Communications, 60(9), 2560–2570.

    Article  Google Scholar 

  60. Sarkiss, M., Othman, G. R., Damen, M. O., & Belfiore, J. (2011). Construction of new delay-tolerant space-time codes. IEEE Transactions on Information Theory, 57(6), 3567–3581.

    Article  MathSciNet  Google Scholar 

  61. Liu, Y., Zhang, W., & Ching, P. C. (2013). Full-diversity distributed space-time codes with an efficient ml decoder for asynchronous cooperative communications. In ICASSP, IEEE international conference on acoustics, speech and signal processing—proceedings, pp. 5011–5015.

  62. Liu, Y., Zhang, W., Liew, S. C., & Ching, P. (2014). Bounded delay-tolerant space-time codes for distributed antenna systems. IEEE Transactions on Wireless Communications, 13(8), 4644–4655.

    Article  Google Scholar 

  63. Li, X. (2004). Space-time coded multi-transmission among distributed transmitters without perfect synchronization. IEEE Signal Processing Letters, 11(12), 948–951.

    Article  Google Scholar 

  64. Yadav, A., Juntti, M., & Karjalainen, J. (2009) Combating timing asynchronism in relay transmission for 3gpp lte uplink. In IEEE wireless communications and networking conference, WCNC.

  65. Hwang, T., & Li, Y. (2003). Iterative cyclic prefix reconstruction for coded single-carrier systems with frequency-domain equalization(sc-fde). IEEE Vehicular Technology Conference, 57, 1841–1845.

    Google Scholar 

  66. Gao, Z., Liao, X., Sun, X., & Zhu, S. (2013) A secure space-time code for asynchronous cooperative communication systems with untrusted relays. In IEEE wireless communications and networking conference, WCNC, pp. 4192–4196.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-T. EL Astal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL Astal, MT., Abu-Hudrouss, A.M. & Olivier, J.C. Improved Signal Detection of Wireless Relaying Networks Employing Space-Time Block Codes Under Imperfect Synchronization. Wireless Pers Commun 82, 533–550 (2015). https://doi.org/10.1007/s11277-014-2239-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2239-4

Keywords

Navigation