Skip to main content
Log in

A New Low-Profile Inverted A-Shaped Patch Antenna for Multi-band Operations

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents the design and analysis of a compact modified inverted-A shape multi-band patch antenna for WiMAX and C-band telecommunication satellite applications. The proposed antenna has simple geometrical structure which consist of 20 mm x 20 mm radiating patch with slot loading and fed by 4 mm long microstrip line. The proposed antenna is designed and analyzed by using commercially available full-wave 3D high frequency electromagnetic simulator namely Ansys HFSS. The optimized design of the proposed multi-band patch antenna is fabricated on 1.6 mm thick fiberglass polymer resin dielectric material substrate with reduced ground plane by using in-house PCB fabrication machineries and antenna performances are measured in a standard far field anechoic chamber. From the experimental results it is observed that, the antenna prototype has achieved operating bandwidth (return loss \(<\)- 10dB) 360 MHz (\(2.53-2.89\) GHz) and 440 MHz (\(3.47-3.91\) GHz) for WiMAX and, 1550 MHz (\(6.28-7.83\) GHz) for C-band. The measured maximum radiation gains for the antenna are about 3.62 dBi, 3.67 dBi and 5.7 dBi at lower, middle and upper operating bands respectively. The designed antenna shows good radiation characteristics and appreciable gain over the operating bands which make it a reliable candidate for WiMAX bands and C-band applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Habib Ullah, M., Islam, M. T., Mandeep, J. S., Misran, N., & Nikabdullah, N. (2012). A compact wideband antenna on dielectric material substrate for K band. Electronics and Electrical Engineering, 123, 75–78.

    Google Scholar 

  2. de Oliveira, E. E. C., D’Assunção, A. G., Oliviera, J. B. L., & Cabral, A. M. (2012). Small size quasi-fractal microstrip antenna M1 EBG-GP. International Journal of Applied Electromagnetics and Mechanics, 39, 645–649.

    Google Scholar 

  3. Ullah, M. H., Islam, M. T., & Mandeep, J. S. (2013). A parametric study of high dielectric material substrate for small antenna design. International Journal of Applied Electromagnetics and Mechanics, 41, 193–198.

    Google Scholar 

  4. Kim, C. B., Lim, J. S., Jang, J. S., Jung, Y. H., Lee, H. S., & Lee, M. S. (2008). Wideband notched compact UWB antenna. International Journal of Applied Electromagnetics and Mechanics, 28, 101–110.

    Google Scholar 

  5. Liu, H.-W., Ku, C.-H., & Yang, C.-F. (2010). Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications. IEEE Antennas and Wireless Propagation Letters, 9, 240–243.

    Article  Google Scholar 

  6. Liu, L., Lu, J., Yang, S., & Ni, G. (2010). Multi-objective design optimization of an inverted-S antenna. International Journal of Applied Electromagnetics and Mechanics, 33, 1049–1055.

    Google Scholar 

  7. Balanis, C. A. (2012). Antenna theory: Analysis and design (3rd ed.). New York: Wiley-Interscience.

    Google Scholar 

  8. Sim, C. Y. D., Cai, F. R., & Hsieh, Y. P. (2011). Multiband slot-ring antenna with single-and dual-capacitive coupled patch for wireless local area network/worldwide interoperability for microwave access operation. IET Microwaves, Antennas & Propagation, 5, 1830–1835.

    Article  Google Scholar 

  9. Wu, H., Zhang, J., Yan, L., Han, L., Yang, R., & Zhang, W. (2012). Differential dual-band antenna-in-package with T-shaped slots. IEEE Antennas and Wireless Propagation Letters, 11, 1446–1449.

    Article  Google Scholar 

  10. Assimonis, S. D., Yioultsis, T. V., Rekanos, I. T., Kriezis, E. E., & Antonopoulos, C. S. (2012). Design and optimization of uniplanar EBG structures. International Journal of Applied Electromagnetics and Mechanics, 39, 615–621.

    Google Scholar 

  11. Ntaikos, D. K., Bourgis, N. K., & Yioultsis, T. V. (2011). Metamaterial-based electrically small multiband planar monopole antennas. Antennas and Wireless Propagation Letters, IEEE, 10, 963–966.

    Article  Google Scholar 

  12. Elbert, B. R. (2003). The satellite communication applications handbook (Artech House Space Applications Series), Artech House Print on Demand.

  13. Dadgarpour, A., Abbosh, A., & Jolani, F. (2011). Planar multiband antenna for compact mobile transceivers. IEEE Antennas and Wireless Propagation Letters, 10, 651–654.

    Article  Google Scholar 

  14. Wang, P., Wen, G.-J., Huang, Y.-J., & Sun, Y.-H. (2012). Compact CPW-fed planar monopole antenna with distinct triple bands for WiFi/WiMAX applications. Electronics Letters, 48, 357–359.

    Article  Google Scholar 

  15. AbuTarboush, H. F., Nilavalan, R., Budimir, D., & Al-Raweshidy, H. S. (2010). Double U-slots patch antenna for tri-band wireless systems. International Journal of RF and Microwave Computer-Aided Engineering, 20, 279–285.

    Google Scholar 

  16. IEEE Standard Test Procedures for Antennas, ANSI/IEEE Std 149-1979, 1979.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rezwanul Ahsan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, M.R., Islam, M.T. & Ullah, M.H. A New Low-Profile Inverted A-Shaped Patch Antenna for Multi-band Operations. Wireless Pers Commun 81, 519–529 (2015). https://doi.org/10.1007/s11277-014-2142-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2142-z

Keywords

Navigation