Skip to main content

Advertisement

Log in

Power allocation and effective capacity of AF successive relays

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the relay based telecommunications with K relays between the source and destination, \(K+1\) time or frequency slots are required for a single frame transmission. However, without the relays, only one time or frequency slot is used for a single frame transmission. Therefore, despite the benefits of relaying systems, this type of communications is not efficient from the spectral efficiency viewpoint. One solution to reduce this issue might be the full-duplex (FD) relays. An old technique which is reconsidered recently to improve the spectral efficiency of telecommunication systems. However, FD relays have a certain complexity, so, some similar techniques such as successive relays with nearly the same performance but less complexity is taken into account now. In successive relaying systems, two relays between the source and destination are employed which receive the transmitted frames from the source and relay it to the destination successively. This structure generally acts like an FD relays. In this paper, the effective capacity performance of an amplify and forward successive relaying systems with power allocation strategy at the relays are studied perfectly. However, while the inter-rely interference (IRI) between two successive relays has to be managed well, the power allocation and the effective capacity is derived under different assumptions about the IRI. In this way, we assume weak or strong, short or long-term constraints on the IRI. Then we extract the optimal transmitted power at the relay to maximize the effective capacity under these constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For a complete review of successive relaying, please refer to [29].

  2. The complete set of symbols can be used for channel estimation, higher order of diversity or..., however, the details and method of using IRI is not our concern here in this paper.

  3. The proof of (21) and (22) is very similar to Appendix 1.

References

  1. Pashazadeh, M., & Tabataba, F. S. (2016). Impact of loop-back interference and channel estimation errors on full-duplex relay networks. Wireless Networks. doi:10.1007/s11276-016-1205-3.

    Google Scholar 

  2. Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5), 2–10.

    Article  Google Scholar 

  3. Liu, G., Yu, F. R., Ji, H., & Leung, V. C. M. (2015). In-band full-duplex relaying: A survey, research issues and challenges. IEEE Communications Surveys & Tutorials, 17(2), 500–524.

    Article  Google Scholar 

  4. Sabharwal, A., Schniter, P., Guo, D., Bliss, D. W., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9), 1637–1652.

    Article  Google Scholar 

  5. Pérez, D. L., Chu, X., Vasilakos, A. V., & Claussen, H. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networking (TON), 21(4), 1145–1158.

    Article  Google Scholar 

  6. Pérez, D. L., Chu, X., Vasilakos, A. V., & Claussen, H. (2014). Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks. IEEE Journal on Selected Areas in Communications, 32(2), 333–344.

    Article  Google Scholar 

  7. Duarte, M. (2012). Full-duplex wireless: Design, implementation and characterization. Ph.D. dissertation, Rice University, Houston, TX, USA.

  8. Riihonen, T., Werner, S., & Wichman, R. (2011). Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Transactions on Signal Processing, 59(12), 5983–5993.

    Article  MathSciNet  Google Scholar 

  9. Rodríguez, L. J., Tran, N. H., & Le-Ngoc, T. (2014). Optimal power allocation and capacity of full-duplex AF relaying under residual self-interference. IEEE Wireless Communications Letters, 3(2), 233–236.

    Article  Google Scholar 

  10. Ding, Z., Krikidis, I., Rong, B., Thompson, J., Wang, C., & Yang, S. (2012). On combating the half-duplex constraint in modern cooperative networks: Protocols and techniques. IEEE Wireless Communications, 19(6), 20–27.

    Article  Google Scholar 

  11. Zhang, S., Zhou, Q. F., Kai, C., & Zhang, W. (2014). Full diversity physical-layer network coding in two-way relay channels with multiple antennas. IEEE Transactions on Wireless Communications, 13(8), 4273–4282.

    Article  Google Scholar 

  12. Fan, Y., Wang, C., Thompson, J., & Poor, H. V. (2007). Recovering multiplexing loss through successive relaying using repetition coding. IEEE Transactions on Wireless Communications, 6(12), 4484–4493.

    Article  Google Scholar 

  13. Wang, C., Fan, Y., Thompson, J., & Poor, H. V. (2009). A comprehensive study of repetition-coded protocols in multi-user multi-relay networks. IEEE Transactions on Wireless Communications, 8(8), 4329–4339.

    Article  Google Scholar 

  14. Zhao, Y., Adve, R., & Lim, T. J. (2007). Improving amplify-and-forward relay networks: optimal power allocation versus selection. IEEE Transactions on Wireless Communications, 6(8), 3114–3123.

    Google Scholar 

  15. Rodríguez, L. J., Tran, N. H., Helmy, A., & Le-Ngoc, T. (2013). Optimal power adaptation for cooperative AF relaying with channel side information. IEEE Transactions on Vehicular Technology, 62(7), 3164–3174.

    Article  Google Scholar 

  16. Kim, H., Lim, S., Wang, H., & Hong, D. (2012). Optimal power allocation and outage analysis for cognitive full duplex relay systems. IEEE Transactions on Wireless Communications, 11(10), 3754–3795.

    Article  Google Scholar 

  17. Emadi, M. J., Davoodi, A. G., & Aref, M. R. (2013). Analytical power allocation for a full-duplex decodeand-forward relay channel. IET Communications, 7(13), 1338–1347.

    Article  Google Scholar 

  18. Yu, B., Yang, L., Cheng, X., & Cao, R. (2015). Power and location optimization for full-duplex decode-and-forward relaying. IEEE Transactions on Communications, 63(12), 4743–4753.

    Article  Google Scholar 

  19. Farhadi, G., & Beaulieu, N. C. (2009). Power-optimized amplify-and-forward multi-hop relaying systems. IEEE Transactions on Wireless Communications, 8(9), 4634–4643.

    Article  Google Scholar 

  20. Mohammadi, M., Sadeghi, P., & Ardebilipour, M. (2013). Node and symbol power allocation in time-varying amplify-and-forward dual-hop relay channels. IEEE Transactions on Vehicular Technology, 62(1), 432–439.

    Article  Google Scholar 

  21. Hua, Y. (2010). An overview of beamforming and power allocation for MIMO relays in MILCOM (pp. 375–380). San Jose, CA, USA.

  22. Riihonen, T., Werner, S., & Wichman, R. (2011). Hybrid full-duplex/half-duplex relaying with transmit power adaptation. IEEE Transactions on Wireless Communications, 10(9), 3074–3085.

    Article  Google Scholar 

  23. Li, L., Wang, L., & Hanzo, L. (2012). Differential interference suppression aided three-stage concatenated successive relaying. IEEE Transactions on Communications, 60(8), 2146–2155.

    Article  Google Scholar 

  24. Lu, H., Hong, P., & Xue, K. (2014). Generalized interrelay interference cancelation for two-path successive relaying systems. IEEE Transactions on Vehicular Technology, 63(8), 4113–4118.

    Article  Google Scholar 

  25. Ji, Y., Han, C., Wang, A., & Shi, H. (2014). Partial inter-relay interference cancellation in two path successive relay network. IEEE Communications Letters, 18(3), 451–454.

    Article  Google Scholar 

  26. Zhang, R. (2009). On achievable rates of two-path successive relaying. IEEE Transactions on Communications, 57(10), 2914–2917.

    Article  Google Scholar 

  27. Gupta, S., Zhang, R., & Hanzo, L. (2016). Throughput maximization for a buffer-aided successive relaying network employing energy harvesting. IEEE Transactions on Vehicular Technology, 65(8), 6758–6765.

    Article  Google Scholar 

  28. Zhai, C., Zhang, W., & Ching, P. C. (2013). Cooperative spectrum sharing based on two-path successive relaying. IEEE Transactions on Communications, 61(6), 2260–2270.

    Article  Google Scholar 

  29. Li, L., Poor, H. V., & Hanzo, L. (2015). Non-coherent successive relaying and cooperation: Principles, designs and applications. IEEE Communications Surveys & Tutorials, 17(3), 1708–1737.

    Article  Google Scholar 

  30. Lari, M., Mohammadi, A., Abdipour, A., & Lee, I. (2012). Characterization of effective capacity in AF relay systems. IEICE Electronics Express, 9(7), 679–684.

    Article  Google Scholar 

  31. Lari, M., Mohammadi, A., Abdipour, A., & Lee, I. (2013). Characterization of effective capacity in antenna selection MIMO systems. Journal of Communications and Networks, 15(5), 476–485.

    Article  Google Scholar 

  32. Lari, M. (2016). Effective capacity of receive antenna selection MIMO-OSTBC systems in co-channel interference. Journal of Wireless Networks,. doi:10.1007/s11276-016-1219-x.

    Google Scholar 

  33. Lari, M., Mohammadi, A., Abdipour, A., & Lee, I. (2012) Effective capacity in receive antenna selection and spatially correlated MIMO-OSTBC systems. In 6th international symposium on telecommunications, (IST’12), Tehran, Iran (pp. 117–122).

  34. Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.

    Article  Google Scholar 

  35. Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.

    Article  Google Scholar 

  36. Yeoh, P. L., Elkashlan, M., & Collings, I. B. (2011). Selection relaying with transmit beamforming: A comparison of fixed and variable gain relaying. IEEE Transactions on Communications, 59(6), 1720–1730.

    Article  Google Scholar 

  37. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.

    MATH  Google Scholar 

  38. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643.

    Google Scholar 

  39. Soret, B., Torres, C. A., & Entrambasaguas, J. T. (2010). Capacity with explicit delay guarantees for generic source over correlated Rayleigh channel. IEEE Transactions on Wireless Communications, 9(6), 1901–1911.

    Article  Google Scholar 

  40. Kang, X., Liang, Y. C., & Nallanathan, A. (2008). Optimal power allocation for fading channels in cognitive radio networks under transmit and interference power constraints. In 2008 IEEE international conference on communications, (ICC’08), Beijing, China (pp. 3568–3572).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Lari.

Appendices

Appendix 1: Proof of (16)

First, we can write the optimization problem in a standard form as

$$\begin{aligned}&\max \nolimits _{\mu _0}-{\textsf {E}}\left\{ \left( 1+\mu _0 \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }}\right\} \nonumber \\&{\mathrm {s.t.}}\quad \quad {\textsf {E}}\left\{ \mu _0\right\} \le 1,\quad \quad {\textsf {E}}\left\{ \mu _0\gamma _{\mathrm {IR}}\right\} \le q_0\nonumber \\&-\mu _0\le 0. \end{aligned}$$
(24)

Then, using Lagrangian method, the cost function is written as

$$J=-{\textsf {E}}\left\{ \left( 1+\mu _0 \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }}\right\} +\lambda _1\left( 1-{\textsf {E}}\left\{ \mu _0\right\} \right) +\lambda _2\left( q_0-{\textsf {E}}\left\{ \mu _0\gamma _{\mathrm {IR}}\right\} \right) +\lambda _3\mu _0$$
(25)

where \(\lambda _1\ge 0\), \(\lambda _2\ge 0\) and \(\lambda _3\ge 0\) are the nonnegative Lagrange multipliers corresponding to our constraints. Taking the partials with respect to \(\mu _0\), we will have [40]

$$\begin{aligned} \frac{\partial J}{\partial \mu }&= {\textsf {E}}\left\{ \tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0 \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}\right\} -\lambda _1-\lambda _2{\textsf {E}}\left\{ \gamma _{\mathrm {IR}}\right\} +\lambda _3\nonumber \\&= {\textsf {E}}\left\{ \tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0 \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}\right\} -\lambda _1-\lambda _2\bar{\gamma }+\lambda _3. \end{aligned}$$
(26)

Now, we can find \(\mu _0^{\mathrm {opt}}\), \(\lambda _1^{\mathrm {opt}}\), \(\lambda _2^{\mathrm {opt}}\) and \(\lambda _3^{\mathrm {opt}}\) such that

$${\textsf {E}}\left\{ \tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0^{\mathrm {opt}} \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}\right\} -\lambda _1^{\mathrm {opt}}-\lambda _2^{\mathrm {opt}}\bar{\gamma }+\lambda _3^{\mathrm {opt}}=0$$
(27)

and

$$\begin{aligned}&\lambda _1^{\mathrm {opt}}\left( 1-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} \right) =0 \end{aligned}$$
(28)
$$\begin{aligned}&\lambda _2^{\mathrm {opt}}\left( q_0-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\gamma _{\mathrm {IR}}\right\} \right) =0 \end{aligned}$$
(29)

and

$$\begin{aligned} \lambda _3^{\mathrm {opt}}\mu _0^{\mathrm {opt}}=0 \end{aligned}$$
(30)

correspondingly. From (30), since \(\mu _0^{\mathrm {opt}}=0\) is not acceptable, we can conclude that \(\lambda _3^{\mathrm {opt}}=0\). Consider (28) and (29), we can break the analysis into four different cases as follows.

  1. 1.

    If \(\lambda _1^{\mathrm {opt}}=0 \left( 1-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} \ne 0\right)\) and \(\lambda _2^{\mathrm {opt}}=0 \left( q_0-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\gamma _{\mathrm {IR}}\right\} \ne 0\right)\), then (27) converts to \({\textsf {E}}\left\{ \tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0^{\mathrm {opt}} \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}\right\} =0\). Since we assume \(\tilde{\theta }>0\), \(\mu _0^{\mathrm {opt}}>0\), \(\gamma _{\mathrm {eq}}>0\) and \(\gamma _{\mathrm {IR}}>0\), this case is not a feasible solution.

  2. 2.

    If \(\lambda _1^{\mathrm {opt}}=0\left( 1-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} \ne 0\right)\) and \(q_0-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\gamma _{\mathrm {IR}}\right\} =0 (\lambda _2^{\mathrm {opt}}\ne 0)\), then (27) converts to \({\textsf {E}}\left\{ \tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0^{\mathrm {opt}} \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}\right\} =\lambda _2^{\mathrm {opt}}\bar{\gamma }\). Here, we can assume \(\tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0^{\mathrm {opt}} \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}=\lambda _2^{\mathrm {opt}}\bar{\gamma }\) and \(\mu _0^{\mathrm {opt}}>0\) which leads to

    $$\begin{aligned} \mu _0^{\mathrm {opt}}= {\left\{ \begin{array}{ll} 0,&{} \gamma _{\mathrm {eq}}<\frac{\lambda _2^{\mathrm {opt}}\bar{\gamma }}{\tilde{\theta }}\\ \left( \frac{\tilde{\theta }}{\lambda _2^{\mathrm {opt}}\bar{\gamma }}\right) ^\frac{1}{\tilde{\theta }+1}\left( \frac{1}{\gamma _{\mathrm {eq}}}\right) ^\frac{\tilde{\theta }}{\tilde{\theta }+1}-\frac{1}{\gamma _{\mathrm {eq}}},&{} \gamma _{\mathrm {eq}}\ge \frac{\lambda _2^{\mathrm {opt}}\bar{\gamma }}{\tilde{\theta }} \end{array}\right. }. \end{aligned}$$
    (31)

    Note that, \(\lambda _2^{\mathrm {opt}}\) can be calculated from \({\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\gamma _{\mathrm {IR}}\right\} ={\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} \bar{\gamma }=q_0\) or equivalently \({\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} =q_0/\bar{\gamma }\). Since we assumed \(\lambda _1^{\mathrm {opt}}=0\), then we have \({\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} <1\). Therefore, this case is valid when \(q_0/\bar{\gamma }<1\).

  3. 3.

    If \(\lambda _2^{\mathrm {opt}}=0\left( q_0-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\gamma _{\mathrm {IR}}\right\} \ne 0\right)\) and \(1-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} =0(\lambda _1^{\mathrm {opt}}\ne 0)\), then (27) converts to \({\textsf {E}}\left\{ \tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0^{\mathrm {opt}} \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}\right\} =\lambda _1^{\mathrm {opt}}\). Here, we can assume \(\tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0^{\mathrm {opt}} \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}=\lambda _1^{\mathrm {opt}}\) and \(\mu _0^{\mathrm {opt}}>0\) which leads to

    $$\begin{aligned} \mu _0^{\mathrm {opt}}= {\left\{ \begin{array}{ll} 0,&{} \gamma _{\mathrm {eq}}<\frac{\lambda _1^{\mathrm {opt}}}{\tilde{\theta }}\\ \left( \frac{\tilde{\theta }}{\lambda _1^{\mathrm {opt}}}\right) ^\frac{1}{\tilde{\theta }+1}\left( \frac{1}{\gamma _{\mathrm {eq}}}\right) ^\frac{\tilde{\theta }}{\tilde{\theta }+1}-\frac{1}{\gamma _{\mathrm {eq}}},&{} \gamma _{\mathrm {eq}}\ge \frac{\lambda _1^{\mathrm {opt}}}{\tilde{\theta }} \end{array}\right. }. \end{aligned}$$
    (32)

    Note that, \(\lambda _1^{\mathrm {opt}}\) can be calculated from \({\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} =1\). Since we assumed \(\lambda _2^{\mathrm {opt}}=0\), then we have \({\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\gamma _{\mathrm {IR}}\right\} ={\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} \bar{\gamma }<q_0\). Therefore, this case is valid when \(q_0/\bar{\gamma }>1\).

  4. 4.

    If \(1-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} =0(\lambda _1^{\mathrm {opt}}\ne 0)\) and \(q_0-{\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\gamma _{\mathrm {IR}}\right\} =0(\lambda _2^{\mathrm {opt}}\ne 0)\), then (27) converts to \({\textsf {E}}\left\{ \tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0^{\mathrm {opt}} \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}\right\} =\lambda _1^{\mathrm {opt}}+\lambda _2^{\mathrm {opt}}\bar{\gamma }\). Here, we can assume \(\tilde{\theta }\gamma _{\mathrm {eq}}\left( 1+\mu _0^{\mathrm {opt}} \gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }-1}=\lambda _1^{\mathrm {opt}}+\lambda _2^{\mathrm {opt}}\bar{\gamma }=\ell\) and \(\mu _0^{\mathrm {opt}}>0\) which leads to

    $$\begin{aligned} \mu _0^{\mathrm {opt}}= {\left\{ \begin{array}{ll} 0,&{} \gamma _{\mathrm {eq}}<\frac{\ell }{\tilde{\theta }}\\ \left( \frac{\tilde{\theta }}{\ell }\right) ^\frac{1}{\tilde{\theta }+1}\left( \frac{1}{\gamma _{\mathrm {eq}}}\right) ^\frac{\tilde{\theta }}{\tilde{\theta }+1}-\frac{1}{\gamma _{\mathrm {eq}}},&{} \gamma _{\mathrm {eq}}\ge \frac{\ell }{\tilde{\theta }} \end{array}\right. }. \end{aligned}$$
    (33)

    Note that, \(\ell\) can be calculated from both \({\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} =1\) or \({\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\gamma _{\mathrm {IR}}\right\} ={\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} \bar{\gamma }=q_0\) with the same value. Therefore, this case is valid when \(q_0/\bar{\gamma }=1\).

Now, we can aggregate cases 2, 3 and 4 in one case such as

$$\begin{aligned} \mu _0^{\mathrm {opt}}= {\left\{ \begin{array}{ll} 0,&{} \gamma _{\mathrm {eq}}<\gamma _{{\text {T}}}\\ \left( \frac{1}{\gamma _{{\text {T}}}}\right) ^\frac{1}{\tilde{\theta }+1}\left( \frac{1}{\gamma _{\mathrm {eq}}}\right) ^\frac{\tilde{\theta }}{\tilde{\theta }+1}-\frac{1}{\gamma _{\mathrm {eq}}},&{} \gamma _{\mathrm {eq}}\ge \gamma _{{\text {T}}} \end{array}\right. }. \end{aligned}$$
(34)

where \(\gamma _{{\text {T}}}\) is a cut-off SNR threshold which is determined from

$$\begin{aligned} {\textsf {E}}\left\{ \mu _0^{\mathrm {opt}}\right\} = {\left\{ \begin{array}{ll} \frac{q_0}{\bar{\gamma }},&{} q_0<\bar{\gamma }\\ 1,&{} q_0\ge \bar{\gamma } \end{array}\right. }. \end{aligned}$$
(35)

Appendix 2: Proof of (19)

By substituting (16) or (18) into (15), we will have

$$\begin{aligned} {\textsf {E}}\left\{ \left( 1+\mu _0^{\mathrm {opt}}\gamma _{\mathrm {eq}}\right) ^{-\tilde{\theta }}\right\} =\underbrace{\int _{0}^{\gamma _{{\text {T}}}}f_{\gamma _{\mathrm {eq}}}(x)dx}_{I_1}+\underbrace{\int _{\gamma _{{\text {T}}}}^{\infty }\left( x/\gamma _{{\text {T}}}\right) ^{-\tilde{\theta }/(1+\tilde{\theta })}f_{\gamma _{\mathrm {eq}}}(x)dx}_{I_2} \end{aligned}$$
(36)

where \(f_{\gamma _{\mathrm {eq}}}(x)\) is presented in (2). For solving \(I_1\), it can be changed to two infinite integrals as

$$\begin{aligned} I_1 &= \underbrace{\int _{0}^{\infty }f_{\gamma _{\mathrm {eq}}}(x)dx}_{I_3}-\underbrace{\int _{\gamma _{{\text {T}}}}^{\infty }f_{\gamma _{\mathrm {eq}}}(x)dx}_{I_4}\nonumber \\ &= \frac{\sqrt{\pi }}{2\Gamma (5/2)}\left[ F(3,3/2,5/2;0)+\frac{1}{2}F(2,1/2,5/2;0)\right] \nonumber \\&-\frac{\sqrt{\pi }\gamma _{{\text {T}}}}{\bar{\gamma }}\left[ G_{23}^{30}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\left| \begin{array}{l}0,3/2\\ -1,2,0\end{array} \right. \right) + G_{23}^{30}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\left| \begin{array}{l}0,3/2\\ -1,1,1\end{array} \right. \right) \right] \end{aligned}$$
(37)

where the closed-form solution of \(I_3\) and \(I_4\) is possible using [37, eq. 6.621-3] and [37, eq. 6.625-7], respectively. Once again [37, eq. 6.625-7] can be used for finding \(I_2\). Therefore, we have

$$\begin{aligned} I_2 &= \frac{\sqrt{\pi }}{4}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\right) ^{\frac{1+2\tilde{\theta }}{1+\tilde{\theta }}}\left[ G_{23}^{30}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\left| \begin{array}{l}0,\frac{1}{2}+\frac{1}{1+\tilde{\theta }}\\ -1,1+\frac{1}{1+\tilde{\theta }},-1+\frac{1}{1+\tilde{\theta }}\end{array} \right. \right) \right. \nonumber \\+ & {} \left. G_{23}^{30}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\left| \begin{array}{l}0,\frac{1}{2}+\frac{1}{1+\tilde{\theta }}\\ -1,\frac{1}{1+\tilde{\theta }},\frac{1}{1+\tilde{\theta }}\end{array} \right. \right) \right] \end{aligned}$$
(38)

where F(., .; .; .) represents Gauss hypergeometric function [37, eq. 9.10], \(\Gamma (.)\) denotes the Gamma function and \(G_{p,q}^{m,n}(.)\) is the Meijer’s G function defined in [37, eq. 9.301]. Now, connecting the obtained results for \(I_1\) and \(I_2\), we have

$$\begin{aligned} E_C(\theta ) &= -\frac{1}{\theta }\ln \left\{ \frac{\sqrt{\pi }}{2\Gamma (5/2)}\left[ F(3,3/2,5/2;0)+\frac{1}{2}F(2,1/2,5/2;0)\right] \right. \nonumber \\- & {} \frac{\sqrt{\pi }\gamma _{{\text {T}}}}{\bar{\gamma }}\left[ G_{23}^{30}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\left| \begin{array}{l}0,3/2\\ -1,2,0\end{array} \right. \right) + G_{23}^{30}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\left| \begin{array}{l}0,3/2\\ -1,1,1\end{array} \right. \right) \right] \nonumber \\+ & {} \left. \frac{\sqrt{\pi }}{4}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\right) ^{\frac{1+2\tilde{\theta }}{1+\tilde{\theta }}}\left[ G_{23}^{30}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\left| \begin{array}{l}0,\frac{1}{2}+\frac{1}{1+\tilde{\theta }}\\ -1,1+\frac{1}{1+\tilde{\theta }},-1+\frac{1}{1+\tilde{\theta }}\end{array} \right. \right) \right. \right. \nonumber \\+ & {} \left. \left. G_{23}^{30}\left( \frac{4\gamma _{{\text {T}}}}{\bar{\gamma }}\left| \begin{array}{l}0,\frac{1}{2}+\frac{1}{1+\tilde{\theta }}\\ -1,\frac{1}{1+\tilde{\theta }},\frac{1}{1+\tilde{\theta }}\end{array} \right. \right) \right] \right\} . \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lari, M. Power allocation and effective capacity of AF successive relays. Wireless Netw 24, 885–895 (2018). https://doi.org/10.1007/s11276-016-1380-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1380-2

Keywords

Navigation