Skip to main content
Log in

Adaptive A-MPDU retransmission scheme with two-level frame aggregation compensation for IEEE 802.11n/ac/ad WLANs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The aggregate MAC protocol data unit (A-MPDU) is one of the significant frame aggregation schemes to improve the performance for high-rate IEEE 802.11n/ac/ad wireless local area networks (WLANs). However, the performance of the A-MPDU scheme does not meet the user expectations because the frame length of the retransmitted A-MPDU will be inevitably and sharply reduced due to the effect of the lost subframe on the number of the aggregatable subframes (i.e., the aggregation level). To overcome this problem, an adaptive A-MPDU retransmission scheme with the two-level frame aggregation compensation is proposed. In this scheme, when the aggregation level of the retransmitted A-MPDU frame dramatically decreases, one of the appropriate two-level aggregation strategies is adaptively employed to compensate the length of the retransmitted A-MPDU frames according to the theoretical analysis of the throughput performance for the conventional A-MPDU scheme and two strategies of the two-level aggregate frame respectively. Simulations using ns-3 platform are performed and the results demonstrate that the proposed adaptive A-MPDU retransmission scheme can achieve higher throughput and medium access control (MAC) layer efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. IEEE WG. (2009). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 5: Enhancements for higher throughput. In IEEE Std 802.11n, October 2009.

  2. IEEE WG. (2013). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 4: Enhancements for very high throughput for operation in bands below 6 GHz. In IEEE Std 802.11ac/D5.0, 2013.

  3. IEEE WG. (2012). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 3: Enhancements for very high throughput in the 60 GHz band. In IEEE Std 802.11ad/D9.0, 2012.

  4. Skordoulis, D., Ni, Q., Chen, H., Stephens, A. P., Liu, C., & Jamalipour, A. (2008). IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs. IEEE Wireless Communication, 15(1), 40C47.

    Article  Google Scholar 

  5. Ginzburg, B. & Kesselman, A. (2007). Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n. In 2007 IEEE Sarnoff symposium (p. 1C5). New York, USA.

  6. Qi, P., & Guo, R. (2013). An adaptive frame length two-level frame aggregation method in 802.11n. Electronic Design Engineering, 21(4), 57–70.

    Google Scholar 

  7. Noma, Adamu M., et al. (2015). Two-level frames aggregation with enhanced A-MSDU for IEEE 802.11 n WLANs. Wireless Personal Communications, 82(3), 1–14.

    Article  Google Scholar 

  8. Li, T., Ni, Q., Malone, D., et al. (2009). Aggregation with fragment retransmission for very high-speed WLANs. IEEE/ACM Transactions on Networking, 17(2), 591–604.

    Article  Google Scholar 

  9. Gast, M. (2012). 802.11 n: A survival guide. USA: O’Reilly Media.

    Google Scholar 

  10. Selvam, T., & Subramanian, S. (2010). A frame aggregation scheduler for IEEE 802.11n. National conference on communications (NCC’2010) (pp. 1–6). Chennai, India.

  11. Lin, Y., & Wong, V. W. S. (2006). Frame aggregation and optimal frame size adaptation for IEEE 802.11n WLANs. Global telecommunications conference (pp. 1–6). San Francisco, USA.

  12. Feng, K. T., & Lin, P. T. (2009). Frame-aggregated link adaptation algorithm for IEEE 802.11n networks. Personal Indoor and mobile radio communications (pp. 42–46). Tokyo, Japan.

  13. Kim, Y., Monroy, E., Lee, O., et al. (2012). Adaptive two-level frame aggregation in IEEE 802.11 n WLAN. In The 18th Asia-Pacific conference on communications (APCC’2012) (pp. 658–663). Jeju Island, Korea.

  14. Saif, A., Othman, M., Subramaniam, S., & Hamid, N. A. W. A. (2012). An enhanced A-MSDU frame aggregation scheme for 802.11n wireless networks. Wireless Personal Communications, 66(4), 683C706.

    Article  Google Scholar 

  15. Saif, A., & Othman, M. (2013). SRA-MSDU: Enhanced A-MSDU frame aggregation with selective retransmission in 802.11 n wireless networks. Journal of Network and Computer Applications, 36(4), 1219–1229.

    Article  Google Scholar 

  16. Saif, A., Othman, M., Subramaniam, S. K., & Hamid, N. A. W. A. (2012). An Optimized A-MSDU frame aggregation with subframe retransmission in IEEE 802.11 n wireless networks. In International conference on computational science (ICCS’2012) (pp. 812–821). Omaha, USA.

  17. Pefkianakis, I., Hu, Y., Wong, S. H., Yang, H., & Lu, S. (2010). MIMO rate adaptation in 802.11n wireless networks. In Proceedings of the sixteenth annual international conference on Mobile computing and networking (MobiCom’10) (pp. 257–268). Chicago, USA.

  18. Liu, J., Yao, M., & Qiu, Z. (2015). Enhanced BlockACK method for A-MPDU transmission in IEEE 802.11 n/ac/ad WLANs. Electronics Letters, 52(2), 159–161.

    Article  Google Scholar 

  19. Vutukuru, M., Balakrishnan, H., & Jamieson, K. (2009). Cross-layer wireless bit rate adaptation. ACM SIGCOMM Computer Communication Review, 39(4), 3C14.

    Article  Google Scholar 

  20. Martorell, G., Riera-Palou, F., & Femenias, G. (2009). Cross-layer link adaptation for IEEE 802.11n. In Proceedings of IEEE 2nd international workshop cross layer design (IWCLD09) (p. 1C5). Palma, Spain.

  21. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  22. Liu, J., Yao, M., & Qiu, Z. (2015). Enhanced two-level frame aggregation with optimized aggregation level for IEEE 802.11 n WLANs. Communications Letters, IEEE, 19(12), 2254–2257.

    Article  Google Scholar 

  23. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  24. Ni, Q., Li, T., Turletti, T., & Xiao, Y. (2005). Saturation throughput analysis of error-prone 802.11 wireless networks. Journal of Wireless Communications and Mobile Computing, 5(8), 945–956.

    Article  Google Scholar 

  25. Yang, J., Cao, M., & SHAO, X. (2014). Two-level aggregation with adaptive frame length for ultra-high speed WLAN. Journal of Computational Information Systems, 10(17), 7447C7458.

    Google Scholar 

  26. NS-3 Network Simulator. http://www.nsnam.org/.

Download references

Acknowledgments

This work was supported in part by the 111 Project (B08038) of MOE, China, and in part by the National Natural Science Foundation of China under Grant 61001129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwu Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yao, M. & Qiu, Z. Adaptive A-MPDU retransmission scheme with two-level frame aggregation compensation for IEEE 802.11n/ac/ad WLANs. Wireless Netw 24, 223–234 (2018). https://doi.org/10.1007/s11276-016-1330-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1330-z

Keywords

Navigation