Skip to main content
Log in

Transmission capacity analysis for cellular based cognitive radio VANETs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper presents a framework of cellular based cognitive-radio vehicular ad hoc networks (CCR-VANETs) that consists of a cellular network (primary network) and VANET (secondary network). These coexisting networks share the uplink spectrum of the cellular network. Although some scaling law-based results on VANETs have been presented for the description of performance changing patterns, they are unsuitable for CCR-VANET and cannot be directly used for estimating the capacity of the communication pairs in the entire network. In this study, we apply the interference-based transmission capacity analysis for CCR-VANET scenario. The classic car-following model is used to describe the moving pattern of all buses and vehicles, and a two-phase CSMA based on the opportunistic spectrum access (OSA) protocol of the secondary network is adopted. Then the calculation of the transmission opportunity is obtained. After that, the outage probability is analyzed, in which just the first layer of interferers in both primary and secondary networks are considered, as a result of the bound effect of interference power in the wireless network. With the obtained results on outage probability under the worst interfered scenario, we characterize a lower bound on transmission capacity of the secondary network. Finally, the simulation results are conducted to validate our analytical results, and also to give an analysis of the average transmission capacity trade-off between the primary and secondary networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Eastwood, P., & Laberteaux, K. (2009). VANET—vehicular applications and inter-networking technologies. Wiley Online Library: Hoboken.

    Google Scholar 

  2. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel & Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  3. Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2014). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks & Applications, 20(1), 4–18.

    Article  Google Scholar 

  4. Shulman, M., & Deering, R. (2007). Vehicle safety communications in the United States. In Presented at conference on experimental safety vehicles.

  5. IEEE Standard for information technology—local and metropolitan area networks—specific requirements—part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6: wireless access in vehicular environments, IEEE Std 802.11p-2010 (amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009), Vol. no., pp. 1–51 (2010).

  6. Wang, Z., & Hassan, M. (2008). How much of dsrc is available for non-safety use?. In Proceedings of the fifth ACM international workshop on vehiculAr inter-NETworking (pp. 23–29). California: ACM.

  7. Hassan, M. I., Vu, H. L., & Sakurai, T. (2011). Performance analysis of the ieee 802.11 mac protocol for dsrc safety applications. IEEE Transactions on Vehicular Technology, 60(8), 3882–3896.

    Article  Google Scholar 

  8. Jiau, M. K., Huang, S. C., Hwang, J. N., & Vasilakos, A. V. (2015). Multimedia services in cloud-based vehicular networks. Intelligent Transportation Systems Magazine IEEE, 7(3), 62–79.

    Article  Google Scholar 

  9. Viriyasitavat, W., Boban, M., Tsai, H. M., & Vasilakos, A. (2015). Vehicular communications: Survey and challenges of channel and propagation models. Vehicular Technology Magazine IEEE, 10(2), 55–66.

    Article  Google Scholar 

  10. Kolodzy, P., & Kolodzy, P. (2002). Spectrum policy task force. Federal Communications Commission Tech.rep.rep.et Docket, 40(4), 147–158.

    Google Scholar 

  11. Wyglinski, A. M., Nekovee, M., & Hou, Y. T. (2010). Cognitive radio communications and networks principles and practice. Communications Magazine IEEE, 46(4), 30–31.

    Article  Google Scholar 

  12. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  13. Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. M. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  14. Lpez-Prez, D., Chu, X., Vasilakos, A. V., & Claussen, H. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing lte networks. IEEE/ACM Transactions on Networking, 21(4), 1145–1158.

    Article  Google Scholar 

  15. Brackstone, M., & Mcdonald, M. (1999). Car-following: A historical review. Transportation Research Part F Traffic Psychology and Behaviour, 2(4), 181–196.

    Article  Google Scholar 

  16. Song, X., Yin, C., & Liu, D. (2014). Spatial throughput characterization in cognitive radio networks with primary receiver assisted carrier sensing based opportunistic spectrum access, IEEE, Globecom.

  17. Byun, S. S., Balashingham, I., Vasilakos, A. V., & Lee, H. N. (2014). Computation of an equilibrium in spectrum markets for cognitive radio networks. IEEE Transactions on Computers, 63(2), 304–316.

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, T., Wang, H., & Vasilakos, A. V. (2012). Qoe-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.

    Article  Google Scholar 

  19. Chakravarthy, V., Li, X., Wu, Z., Temple, M. A., Garber, F., Kannan, R., et al. (2009). Novel overlay/underlay cognitive radio waveforms using sd-smse framework to enhance spectrum efficiency- part i: theoretical framework and analysis in awgn channel. Communications IEEE Transactions on, 57(12), 3794–3804.

    Article  Google Scholar 

  20. Felice, M. D., Chowdhury, K. R., & Bononi, L. (2010). Analyzing the potential of cooperative cognitive radio technology on inter-vehicle communication. In Proceedings of the IFIP wireless days. Italy: Venice.

  21. Fawaz, K., Ghandour, A., Olleik, M., & Artail, H. (2010). Improving reliability of safety applications in vehicle ad hoc networks through the implementation of a cognitive network. Telecommunications (ICT), 2010 IEEE 17th international conference on (pp. 798–805). Doha: IEEE.

  22. Singh, K. D., Rawat, P., & Bonnin, J. M. (2014). Cognitive radio for vehicular ad hoc networks (CR-VANETs): Approaches and challenges. Eurasip Journal on Wireless Communications and Networking, 49(4), 2122–2135.

    Google Scholar 

  23. He, X., Shi, W., & Luo, T. (2014). Survey of cognitive radio vanet. KSII Transactions on Internet and Information Systems, 8(11), 3837–3859.

    Google Scholar 

  24. Kim, K. T., & Oh, S. K. (2008). Cognitive ad-hoc networks under a cellular network with an interference temperature limit. Advanced communication technology, 2008. ICACT 2008. 10th international conference on, Vol. 2, IEEE, pp. 879–882 .

  25. Feizi-Khankandi, S., & Ashtiani, F. (2008). Lower and upper bounds for throughput capacity of a cognitive ad-hoc network overlaid on a cellular network. Wireless communications and networking conference, 2008. WCNC 2008. IEEE, IEEE, pp. 2759–2764.

  26. Marques, P., Bastos, J. & Gameiro, A. (2008). Opportunistic use of 3G uplink licensed bands. In Proceedings of the IEEE international conference on communications, Beijing, China, pp. 3588–3592.

  27. Kim, D., & Dong, G. J. (2000). Capacity unbalance between uplink and downlink in spectrally overlaid narrow-band and wide-band cdma mobile systems. IEEE Transactions on Vehicular Technology, 49(4), 1086–1093.

    Article  MathSciNet  Google Scholar 

  28. Wlink 4G/3G WiFi Bus. http://www.wlink-tech.com/Product_Info.asp?ProductID=709.

  29. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MathSciNet  MATH  Google Scholar 

  30. Baccelli, F., Blaszczyszyn, B., & Muhlethaler, P. (2006). An Aloha protocol for multihop mobile wireless networks. IEEE Transactions on Information Theory, 52(2), 421–436.

    Article  MathSciNet  MATH  Google Scholar 

  31. Weber, S. P., Yang, X., Andrews, J. G., & De Veciana, G. (2010). Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Transactions on Information Theory, 51(12), 4091–4102.

    Article  MathSciNet  MATH  Google Scholar 

  32. Weber, S., Andrews, J. G., & Jindal, N. (2007). The effect of fading, channel inversion, and threshold scheduling on ad hoc networks. IEEE Transactions on Information Theory, 53(11), 4127–4149.

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, N., Luan, T. H., Wang, M., Shen, X., & Bai, F. (2014). Bounds of asymptotic performance limits of social-proximity vehicular networks. IEEE/ACM Transactions on Networking, 22(3), 812–825.

    Article  Google Scholar 

  34. Nekoui, M., Eslami, A., & Pishro-Nik, H. (2008). Scaling laws for distance limited communications in vehicular ad hoc networks. Communications, 2008. ICC ’08. IEEE international conference on, IEEE, pp. 2253–2257.

  35. Lee, C. H., & Haenggi, M. (2012). Interference and outage in poisson cognitive networks. IEEE Transactions on Wireless Communications, 11(4), 1392–1401.

    Article  Google Scholar 

  36. Song, X., Yin, C., Liu, D., & Zhang, R. (2014). Spatial throughput characterization in cognitive radio networks with treshold-based opportunistic spectrum access. IEEE Journal on Selected Areas in Communications, 32(11), 2190–2204.

    Article  Google Scholar 

  37. Ni, M., Zhang, L., Pan, J. Cai, L., Rutagemwa, H., Li, L., & Wei, T.(2014). Connectivity in mobile tactical networks, IEEE Globecom, pp. 4400–4405.

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China under Grant Nos. 61271184 and 61571065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, H. & Luo, T. Transmission capacity analysis for cellular based cognitive radio VANETs. Wireless Netw 23, 2215–2226 (2017). https://doi.org/10.1007/s11276-016-1280-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1280-5

Keywords

Navigation