Skip to main content

Advertisement

Log in

CASMOC: a novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Coverage is a significant performance indicator of wireless sensor networks. Data redundancy in k-coverage raises a set of issues including network congestion, coverage reduction, energy inefficiency, among others. To address these issues, this paper proposes a novel algorithm called complex alliance strategy with multi-objective optimization of coverage (CASMOC) which could improve node coverage effectively. This paper also gives the proportional relationship of the energy conversion function between the working node and its neighbors, and applies this relationship in scheduling low energy mobile nodes, thus achieving energy balance of the whole network, and optimizing network resources. The extensive simulation results demonstrate that CASMOC could not only improve the quality of network coverage, but also mitigate rapid node energy consumption effectively, thereby extending the life cycle of the network significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Wei, W., Yang, X., Shen, P., & Zhou, B. (2012). Holes detection in anisotropic sensornets: Topological methods. International Journal of Distributed Sensor Networks, 2012, 1–9.

    Google Scholar 

  2. Xing, X., Wang, G., & Li, J. (2014). Collaborative target tracking in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 23(8), 117–135.

    Google Scholar 

  3. Sun, Z., Weiguo, W., Wang, H., Chen, H., & Wei, W. (2014). An optimization strategy coverage control algorithm for WSN. International Journal of Distributed Sensor Networks, 2014, 1–17.

    Google Scholar 

  4. Liao, Z., Wang, J., Zhang, S., & Zhang, X. (2013). A deterministic sensor placement scheme for full coverage and connectivity without boundary effect in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 19(3–4), 327–351.

    Google Scholar 

  5. Dong, M., Ota, K., Laurence, T. Y., Chang, S., Zhu, H., & Zhou, Z. (2014). Mobile agent-based energy-aware and user-centric data collection in wireless sensor networks. Computer Networks, 74(3), 58–70.

    Article  Google Scholar 

  6. Tseng, Y., Chen, P., & Chen, W. (2012). k-Angle object coverage problem in a wireless sensor network. IEEE Sensors Journal, 12(12), 3408–3416.

    Article  Google Scholar 

  7. Ghaderi, R., Esnaashari, M., & Meybodi, M. (2014). A cellular learning automata-based algorithm for solving the coverage and connectivity problem in wireless sensor networks. Ad hoc & Sensor Wireless Networks, Ad hoc & Sensor Wireless Networks, 22(4), 171–203.

    Google Scholar 

  8. Yanling, H., Dong, M., Ota, K., Liu, A., & Guo, M. (2014). Mobile target detection in wireless sensor networks with adjustable sensing frequency. IEEE Systems, 8(3), 1–12.

    Article  Google Scholar 

  9. Yang, C., & Chin, K. (2014). Novel algorithm for complete targets coverage in energy harvesting wireless sensor networks. IEEE Communications Letters, 18(1), 118–121.

    Article  MathSciNet  Google Scholar 

  10. Wei, W., & Qi, Y. (2011). Information potential fields navigation in wireless ad-hoc sensor network. Sensor, 2011, 4794–4807.

    Article  Google Scholar 

  11. Long, J., Dong, M., Ota, K., Liu, A., & Hai, S. (2015). Reliability guaranteed efficient data gathering in wireless sensor networks. IEEE Access, 3(2), 430–444.

    Article  Google Scholar 

  12. Wang, Y., & Tseng, Y. (2008). Distributed deployment schemes for mobile wireless sensor networks to ensure multi-level coverage. IEEE Trans. Parallel and Distributed Systems, 19(9), 1280–1294.

    Article  Google Scholar 

  13. Akhtar, F., & Rehmani, M. H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Elsevier Renewable and Sustainable Energy Reviews, 45(5), 769–784.

    Article  Google Scholar 

  14. Yen, L., Changwu, Yu., & Cheng, Y. (2006). Expected k-coverage in wireless sensor networks. Ad Hoc Networks, 5(4), 636–650.

    Article  Google Scholar 

  15. Kong, L., Zhao, M., Liu, X., Jialiang, L., Liu, Y., Minyou, W., & Shu, W. (2014). Surface coverage in sensor network. IEEE Transactions on Parallel and Distributed Systems, 25(1), 234–243.

    Article  Google Scholar 

  16. Sendra, S., Fernandez, P., Turro, C., & Lloret, J. (2010). IEEE 802.11a/b/g/n indoor coverage and performance comparison. The Sixth International Conference on Wireless and Mobile Communications (ICWMC 2010), Valencia (Spain), September 20–24, 2010.

  17. Garcia, M., Tomás, J., Boronat, F., & Lloret, J. (2009). The development of two systems for indoor wireless sensors self-location. Ad Hoc & Sensor Wireless Networks, 8(3), 235–258.

    Google Scholar 

  18. Sendra, S., Lloret, J., Turro, C., & Agriar, J. M. (2014). IEEE 802.11a/b/g/n short scale indoor wireless sensor placement. International Journal of Ad Hoc and Ubiquitous Computing, 15(2), 68–82.

    Article  Google Scholar 

  19. Mohamed, L., Herve, G., & Mohammed, F. (2010). Cluster-based energy-efficient k-coverage for wireless sensor networks. Network Protocols and Algorithms, 2(2), 89–106.

    Google Scholar 

  20. Suárez, A., Santana, J. A., Maciaslopez, E. M., Mena, V. E., Canino, J. M., & Marrero, D. (2014). RSSI prediction in WiFi considering realistic heterogeneous restrictions. Network Protocols and Algorithms, 4(6), 19–40.

    Article  Google Scholar 

  21. Matthieu, L., Faicel, H., & Hichem, S. (2011). Multi-objective optimization in wireless sensors networks, 2011 Internation Conference on Microelectronics (ICM 2011), Hammamet, Tunisia, pp. 1–4, 19–22 Dec. 2011.

  22. Meng, F., Wang, H., & He, H. (2011). Connected coverage protocol using cooperative sensing model for wireless sensor network. Acta Elecronica Sinca, 9(4), 772–779.

    Google Scholar 

  23. Mini, S., Udqata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensros Journal, 14(3), 636–644.

    Article  Google Scholar 

  24. Li, Y., Chinh, V., Ai, C., Chen, G., & Zhao, Y. (2011). Transforming complete coverage algorithms to partial coverage algorithm for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(4), 695–703.

    Article  Google Scholar 

  25. Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., & Azam, M. (2015). Wireless sensor network optimization: multi-objective paradigm. Sensors, 7, 17572–17620.

    Article  Google Scholar 

  26. Razafindralambo, T., & Simplotryl, D. (2011). Connectivity preservation and coverage schemes for wireless sensor networks. IEEE Transactions on Automatic Control, 56(10), 2418–2428.

    Article  MathSciNet  Google Scholar 

  27. Ammari, H. M., & Das, S. K. (2012). Centralized and clustered k-coverage protocols for wireless sensor networks. IEEE Transactions on Computers, 61(1), 118–133.

    Article  MathSciNet  Google Scholar 

  28. Junzhao, D., Wang, K., Liu, H., & Guo, D. (2013). Maximizing the lifetime of k-discrete barrier coverage using mobile sensors. IEEE Sensors Journal, 13(12), 4690–4701.

    Article  Google Scholar 

  29. Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.

    Article  Google Scholar 

  30. Xing, X., Wang, G., & Li, J. (2014). Polytype target coverage scheme for heterogeneous wireless sensor networks using linear programming. Wireless Communications and Mobile Computing., 14(8), 1397–1408.

    Article  Google Scholar 

  31. Sun, Z., Weiguo, W., Wang, H., Chen, H., & Xing, X. (2014). A novel coverage algorithm based on event-probability-driven mechanism in wireless sensor network. EURSIP Journal on Wireless Communications and Networking, 2014(1), 1–17.

    Article  Google Scholar 

  32. Wang, H., Meng, F., & Li, Z. (2010). Energy efficient coverage conserving protocol for wireless sensor networks. Journal of Software, 21(12), 3124–3137.

    Article  Google Scholar 

  33. Cheng, T. M., & Savkin, A. V. (2009). A distributed self -deployment algorithm for the coverage of mobile wireless sensor networks. IEEE Communications Letters., 13(11), 877–879.

    Article  Google Scholar 

  34. Abrar, H., Chakrabarti, S., & Biswas, P. K. (2012). Impact of sensing model on wireless sensor network coverage. IET Wireless Sensor Systems, 2(3), 272–281.

    Article  Google Scholar 

  35. Yoon, Y., & Kim, Y. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor network. IEEE Transactions on Cybernetics., 45(5), 1473–1483.

    Article  Google Scholar 

  36. Sundhar Ram, S., Manjunath, D., & Lyer, S. K. (2007). On the path coverage properties of random sensor networks. IEEE Transactions on Mobile Computing, 6(5), 1–13.

    Article  Google Scholar 

  37. Cardei, M., & Jie, W. (2005). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.

    Article  Google Scholar 

  38. Zhao, Q., & Mohan, G. (2008). Lifetime maximization for connected target coverage in wireless sensor networks. IEEE/ACM Transactions on Networking, 16(6), 1378–1391.

    Article  Google Scholar 

  39. Jiang, H., Jin, S., & Wang, C. (2011). Prediction or not? An energy-efficient framework for clustering-based data collection in wireless sensor network. IEEE Transactions on Parallel and Distributed Systems, 22(6), 1064–1071.

    Article  Google Scholar 

  40. Zhu, J., & Xiaodong, H. (2008). Improved algorithm for minimum data aggregation time problem in wireless sensor networks. Journal of System Science & Complexity, 21(4), 626–636.

    Article  MathSciNet  MATH  Google Scholar 

  41. Xiaohua, X., Li, X., & Mao, X. (2011). A delay-efficient algorithm for data aggregation in multihop wireless sensor networks. IEEE Transaction on Parallel and Distributed Systems, 22(1), 163–175.

    Article  Google Scholar 

  42. Lei, L., Lin, C., Cai, J., & Shen, X. (2009). Rerformance analysis of wireless opportunistic schedulers using stochastic petri nets. IEEE Transactions on Wireless Communications, 8(4), 2076–2087.

    Article  Google Scholar 

  43. Yanwei, W., Li, X., & Liu, Y. (2010). Energy-efficient wake-up scheduling for data collection and aggregation. IEEE Transactions on Parallel and Distributed Systems, 21(2), 275–287.

    Article  Google Scholar 

  44. Jie, W., Fei, D., & Ming, G. (2002). On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless network. Journal of Communications and Networks, 4(1), 1–12.

    Google Scholar 

  45. Oliveira, T., Raju, M., & Agrawal, D. P. (2012). Accurate distance estimation using fuzzy based combined RSSI/LQI values in an indoor scenario: Experimental verification. Network Protocols and Algorithms, 4(4), 174–199.

    Article  Google Scholar 

  46. Elbes, M., Jordan, A., Fuqaha, A. A., & Anan, M. (2013). A precise indoor localization approach based on particle filter and dynamic exclusion techniques. Network Protocols and Algorithms, 5(2), 50–71.

    Article  Google Scholar 

  47. Lloret, J., Tomas, J., Garcia, M., & Canovas, A. (2009). Hybrid stochastic approach for self-location of wireless sensors in indoor environments. Sensors, 9(5), 3695–3712.

    Article  Google Scholar 

  48. Sendra, S., Lloret, J., García, M., & Toledo, J. F. (2011). Power saving and energy optimization techniques for wireless sensor networks. Journal of Communications, 6(6), 439–459.

    Article  Google Scholar 

  49. Wei, W., Qin, X., Wang, L., Hei, X., Shen, P., Shi, W., & Shan, L. (2014). GI/Geom/1 queue based on communication model for mesh networks. International Journal of Communication Systems, 27(11), 3013–3029.

    Google Scholar 

  50. Jameii, S. M., Faez, K., & Dehghan, M. (2015). Multiobjective optimization for topology and coverage control in wireless sensor networks. International Journal of Distributed Sensor Networks, 1, 1–11.

    Google Scholar 

  51. Wei, W., Yang, X., Zhou, B., Feng, J., & Shen, P. (2012). Combined energy minimization for image reconstruction from few views. Mathematical Problems in Engineering., 2012, 1–15.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Projects (61170245, U1304603) supported by the National Natural Science Foundation of China; Projects (2014B520099, 2014A510009) supported by Henan Province Education Department Natural Science Foundation; Projects (142102210471, 142102210063, 142102210568) supported by Natural Science and Technology Research of Foundation Project of Henan Province Department of Science; Project (1401037A) supported by Natural Science and Technology Research of Foundation Project of Luoyang Department; Project (2014M562153) supported by Postdoctoral Science Foundation of China; Project (2012GGJS-191) supported by the funding scheme for youth teacher of Henan Province; Project (1201430560) supported by Guangzhou Education Bureau Science Foundation. This paper was also supported by China Postdoctoral Science Foundation (Nos. 2013M542370, 2014M562153) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136118120010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Lloret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhang, Y., Nie, Y. et al. CASMOC: a novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks. Wireless Netw 23, 1201–1222 (2017). https://doi.org/10.1007/s11276-016-1213-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1213-3

Keywords

Navigation