Skip to main content
Log in

Building accurate radio environment maps from multi-fidelity spectrum sensing data

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In cognitive wireless networks, active monitoring of the wireless environment is often performed through advanced spectrum sensing and network sniffing. This leads to a set of spatially distributed measurements which are collected from different sensing devices. Nowadays, several interpolation methods (e.g., Kriging) are available and can be used to combine these measurements into a single globally accurate radio environment map that covers a certain geographical area. However, the calibration of multi-fidelity measurements from heterogeneous sensing devices, and the integration into a map is a challenging problem. In this paper, the auto-regressive co-Kriging model is proposed as a novel solution. The algorithm is applied to model measurements which are collected in a heterogeneous wireless testbed environment, and the effectiveness of the new methodology is validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mitola, J., III, & Maquire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications Magazine, 6(4), 13–18.

    Article  Google Scholar 

  2. Zhao, Y. (2007). Enabling cognitive radios through radio environment maps. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

  3. Yilmaz, H. B., Tugcu, T., Alagöz, F., & Bayhan, S. (2013). Radio environment map as enabler for practical cognitive radio networks. IEEE Communications Magazine, 51(12), 162–169.

    Article  Google Scholar 

  4. FARAMIR project (http://www.ict-faramir.eu). Internet resource. Accessed Sep 2015.

  5. Denkovski, D., Atanasovski, V., Gavrilovska, L., & Riihijarvi, J. (2012). Reliability of a radio environment map: Case of spatial interpolation techniques. In Proceedings of the 7th international ICST conference on cognitive radio oriented wireless networks and communications (pp. 248–253).

  6. Ureten, S., Yongacoglu, A., & Petriu, E. (2012). A comparison of interference cartography generation techniques in cognitive radio networks. In 2012 IEEE international conference on communications (pp. 1879–1883).

  7. Pesko, M., Javornik, T., Stular, M., & Mohorcic, M. (2013). The comparison of methods for constructing the radio frequency layer of radio environment map using participatory measurements. In Proceedings of the 4th Workshop of COST Action IC0902, cognitive radio and networking for cooperative coexistence of heterogeneous wireless networks (pp. 1–2).

  8. Kim, S.-J., Dall’Anese, E., & Giannakis, G. (2011). Cooperative spectrum sensing for cognitive radios using Kriged Kalman filtering. IEEE Journal of Selected Topics in Signal Processing, 5, 24–36.

    Article  Google Scholar 

  9. Portoles-Comeras, M., Ibars, C., Nunez-Martinez, J., & Mangues-Bafalluy, J. (2011). Characterizing WLAN medium utilization for radio environment maps. In IEEE vehicular technology conference (VTC Fall) (pp. 1–5).

  10. van de Beek, J., Lidstrom, E., Cai, T., Xie, Y., Rakovic, V., Atanasovski, V., Gavrilovska, L., Riihijarvi, J., Mahonen, P., Dejonghe, A., Van Wesemael, P., & Desmet, M. (2012). REM-enabled Opportunistic LTE in the TV Band. In IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 272–273).

  11. Pesko, M., Javornik, T., Vidmar, L., Košir, A., Štular, M., & Mohorčič, M. (2015). The indirect self-tuning method for constructing radio environment map using omnidirectional or directional transmitter antenna. EURASIP Journal on Wireless Communications and Networking, 2015(1).

  12. Atanasovski, V. (2011). Constructing radio environment maps with heterogeneous spectrum sensors. In Proceedings of IEEE symposium on new frontiers in dynamic spectrum access networks (pp. 660–661).

  13. Gavrilovska, L., Atanasovski, V., Rakovic, V., & Denkovski, D. (2014). Integration of heterogeneous spectrum sensing devices towards accurate REM construction. In M.-G. Di Benedetto & F. Bader (Eds.), Chapter 9 in cognitive communication and cooperative hetnet coexistence. Switzerland: Springer International Publishing.

    Google Scholar 

  14. Kennedy, M. C., & O’Hagan, A. (2000). Predicting the output from complex computer code when fast approximations are available. Biometrika, 87, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  15. Simpson, T., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-based engineering design: Survey and recommendations. Engeering with Computers (London), 17(2), 129–150.

    Article  MATH  Google Scholar 

  16. Kleijnen, J. P. C. (2008). Design and analysis of simulation experiments. New York: Springer.

    MATH  Google Scholar 

  17. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  18. Emmerich, M. T. M., Giannakoglou, K., & Naujoks, B. (2006). Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Transactions on Evolutionary Computation, 10(4), 421–439.

    Article  Google Scholar 

  19. Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52, 119–139.

    Google Scholar 

  20. Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis of computer experiments. Statistical Science, 4(4), 409–435.

    Article  MathSciNet  MATH  Google Scholar 

  21. Knowles, J., & Nakayama, H. (2008). Meta-modeling in multiobjective optimization. In J. Branke, K. Deb, K. Miettinen, & R. Słowiński (Eds.), Multiobjective optimization: Interactive and evolutionary approaches (pp. 245–284). Berlin: Springer.

    Chapter  Google Scholar 

  22. Couckuyt, I., Deschrijver, D., & Dhaene, T. (2013). Fast calculation of the multiobjective probability of improvement and expected improvement criteria for pareto optimization. Journal of Global Optimization, 60(3), 1–22.

    MathSciNet  MATH  Google Scholar 

  23. Gorissen, D., Crombecq, K., Couckuyt, I., Demeester, P., & Dhaene, T. (2010). A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 11, 2051–2055.

    Google Scholar 

  24. Wang, G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 129(4), 370–380.

    Article  MathSciNet  Google Scholar 

  25. Couckuyt, I., Forrester, A., Gorissen, D., De Turck, F., & Dhaene, T. (2012). Blind kriging: Implementation and performance analysis. Advances in Engineering Software, 49, 1–13.

    Article  Google Scholar 

  26. Stein, M. L. (1999). Interpolation of spatial data: Some theory for kriging. New York: Springer.

    Book  MATH  Google Scholar 

  27. Morris, M. D., Mitchell, T. J., & Ylvisaker, D. (1993). Design and analysis of computer experiments: Use of derivatives in surface prediction. Technometrics, 35(3), 243–255.

    Article  MathSciNet  MATH  Google Scholar 

  28. Staum, J. (2009). Better simulation metamodeling: The why, what, and how of stochastic kriging. In Proceedings of the winter simulation conference.

  29. Forrester, A. I. J., Sobester, A., & Keane, A. J. (2007). Multi-fidelity optimization via surrogate modelling. Royal Society, 463(2088), 3251–3269.

    Article  MathSciNet  MATH  Google Scholar 

  30. Bouckaert, S., et al. (2012). Federating wired and wireless test facilities through Emulab and OMF: The iLab.t use case. In Proceedings of TridentCom.

  31. Liu, W., Keranidis, S., Mehari, M., Vanhie-Van Gerwern, J., Bouckaert, S., Yaron, O., & Moerman, I. (2013). Various detection techniques and platforms for monitoring interference condition in a wireless testbed. In: Lecture notes in computer science (Vol. 7586, pp. 43–60).

  32. USRP N210 Data Sheet. (2014). Ettus Research, Santa Clara (CA), USA.

  33. Pollin, S., Hollevoet, L., Wesemael, P. V., Desmet, M., Bourdoux, A., Lopez, E., Naessens, F., Raghavan, P., Derudder, V., Dupont, S., & Dejonghe, A. (2011). An integrated reconfigurable engine for multi-purpose sensing up to 6 GHz. In IEEE international symposium on dynamic spectrum access networks (pp. 656–657).

  34. IEEE 802.11 Standard. (2012). Standard for information technology—Telecommunications and information exchange between systems local and metropolitan area networks—Specific requirements part 11.

  35. TCPdump. (2014). A command line packet analyzer. http://www.tcpdump.org. Accessed 19 Feb.

  36. Alcock, S., Lorier, P., & Nelson, R. (2012). Libtrace: A packet capture and analysis library. SIGCOMM Computer Communication Review, 42(2), 42–48.

    Article  Google Scholar 

  37. GNU Radio. (2014) http://gnuradio.org/redmine/projects/gnuradio. Accessed 11 Mar 2014.

  38. Sutton, P. D., Lahlou, H., Fahmy, S. A., Nolan, K. E., Ozgul, B., Rondeau, T. W., et al. (2010). Iris: An architecture for cognitive radio networking testbeds. IEEE Communications Magazine, 48, 114–122.

    Article  Google Scholar 

  39. UHD. (2014). http://code.ettus.com/redmine/ettus/projects/uhd/wiki. Accessed 11 Mar 2014.

  40. Liu, W., Pareit, D., Poorter, E. D., & Moerman, I. (2013). Advanced spectrum sensing with parallel processing based on software-defined radio. EURASIP Journal on Wireless Communications and Networking, 228, 15.

    Google Scholar 

Download references

Acknowledgments

The research activities that have been described in this paper were funded by Ghent University, iMinds, the Fund for Scientific Research in Flanders (FWO-V) Project G.0325.11N and the Interuniversity Attraction Poles Programme BESTCOM initiated by the Belgian Science Policy Office. This paper is also the result of research carried out as part of the QoCON project funded by iMinds. QoCON is being carried out by a consortium of the industrial partners: Televic, Option and Barco in cooperation with iMinds research groups: IBCN (UGent), WiCa (UGent), SMIT (VUB), PATS (UA) and IMEC. D. Deschrijver and I. Couckuyt are post-doctoral research fellows of FWO-V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvakumar Ulaganathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulaganathan, S., Deschrijver, D., Pakparvar, M. et al. Building accurate radio environment maps from multi-fidelity spectrum sensing data. Wireless Netw 22, 2551–2562 (2016). https://doi.org/10.1007/s11276-015-1111-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1111-0

Keywords

Navigation