Skip to main content
Log in

An adaptive routing algorithm considering position and social similarities in an opportunistic network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

An opportunistic network (OPPNET) is a wireless networks without an infrastructure. In OPPNET , communication intermittently occurs when one node meets with another node. Thus, a connected path between the source and destination nodes rarely exists. For this reason, nodes need not only to forward messages but are also to store and carry messages as relay nodes. In OPPNET, several routing algorithms that rely on relay nodes with appropriate behavior have been proposed. Some of these are referred to as context-ignorant routing algorithms, which manipulate flooding, and others are referred to as context-aware routing algorithms, which utilize the contextual information. We propose a routing algorithm that employs a novel similarity based on both position and social information. We combine the position similarity with the social similarity using the fuzzy inference method to obtain the enhanced performance. Through this method, the proposed algorithm utilizes more proper relay nodes in forwarding adaptively and achieves significant improvement on the performance especially under memory constrained environment. We analyze the proposed algorithm on the NS-2 network simulator with the home-cell community-based mobility model. Experimental results show that the proposed algorithm outperforms typical routing algorithms in terms of the network traffic and delivery delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Conti, M., & Kumar, M. (2010). Opportunities in opportunistic computing. IEEE Computer, 43(1), 42–50.

    Article  Google Scholar 

  2. Conti, M., Giordano, S., May, M., & Passarella, A. (2010). From opportunistic networks to opportunistic computing networks. IEEE Communications Magazine, 48(9), 126–139.

    Article  Google Scholar 

  3. Wang, X., Vasilakos, A., Chen, M., Liu, Y., & Kwon, T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  4. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  5. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications IEEE, 20(6), 91–98.

    Article  Google Scholar 

  6. Liu, J., Wan, J., Wang, Q., Li, D., Qiao, Y., & Cai, H. (2015). A novel energy-saving one-sided synchronous two-way ranging algorithm for vehicular positioning. ACM/Springer Mobile Networks and Applications.

  7. Sengupta, S., Das, S., Nasir, M., Vasilakos, A., & Pedrycz, W. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, 42(6), 1093–1102.

    Article  Google Scholar 

  8. Yan, Z., Zhang, P., & Vasilakos, A. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42, 120–134.

    Article  Google Scholar 

  9. Duarte, P., Fadlullah, Z., Vasilakos, A., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  10. Rahimi, M., Venkatasubramanian, N., Mehrotra, S., & Vasilakos, A. (2012). MAPCloud: Mobile applications on an elastic and scalable 2-tier cloud architecture. In Proceedings of the 2012 IEEE/ACM fifth international conference on utility and cloud computing, pp. 83–90.

  11. Bansal, M., Rajput, R., & Gupta, G. (1999). Mobile ad hoc networking (MANET): Routing protocol performance issues and evaluation considerations. The internet society.

  12. Zhang, Z. (2006). Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challengers. IEEE Communication Surveys Tutorials, 8(10), 24–37.

    Article  Google Scholar 

  13. Yao, Y., Cao, Q., & Vasilakos, A. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. MASS, 2013, 182–190.

    Google Scholar 

  14. Vasilakos, A., Zhang, Y., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. New York: CRC Press.

  15. Attar, A., Tang, H., Vasilakos, A., Yu, F., & Leung, V. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  16. Xiao, Y., Peng, M., Gibson, J., Xie, G., Ding-Zhu, D., & Vasilakos, A. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  17. Yen, Y., Chao, H., Chang, R., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  18. Spyropoulos, T., Rais, R., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  19. Liu, J., Wan, J., Wang, Q., Deng, P., Zhou, K., & Qiao, Y. (2015), A survey on position-based routing for vehicular ad hoc networks. Springer Telecommunication Systems.

  20. Han, K., Luo, J., Liu, Y., & Vasilakos, A. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  21. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  22. Chilamkurti, N., Zeadally, S., Vasilakos, A., Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, 9.

    Article  Google Scholar 

  23. Woungang, I., Dhurandher, S., Anpalagan, A., & Vasilakos, A. (2013). Routing in opportunistic networks. New York: Springer.

  24. Cheng, H., Xiong, N., Vasilakos, A., Yang, L., Chen, G., & Zhuang, X. (2012). Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.

    Article  Google Scholar 

  25. Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  26. Liu, X., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A., & Wu, M. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  27. Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks, 11(3), 45.

    Article  Google Scholar 

  28. Li, M., Li, Z., & Vasilakos, A. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  29. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, PP(99), 1.

    MathSciNet  Google Scholar 

  30. Zeng, Y., Li, D., & Vasilakos, A. (2013). Real-time data report and task execution in wireless sensor and actuator networks using self-aware mobile actuators. Computer Communications, 36(9), 988–997.

    Article  Google Scholar 

  31. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. (2014). Routing metrics of cognitive radio networks: A survey, communications surveys and tutorials. IEEE, 16(1), 92–109.

    Google Scholar 

  32. Busch, C., Kanna, R., & Vasilakos, A. (2012). Approximating congestion + dilation in networks via “quality of routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  33. Li, P., Guo, S., Yu, S., & Vasilakos, A. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  34. Dvir, A., & Vasilakos, A. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  35. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  36. Zhang, X., Zhang, Y., Yan, F., & Vasilakos, A. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  37. Li, P., Guo, S., Yu, S., & Vasilakos, A. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. INFOCOM, pp. 100–108.

  38. Yen, Y., Chao, H., Chang, R., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  39. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  40. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially connected ad hoc networks. Technical report CS-200006, Duke University.

  41. Spyropoulos, T., Psounis, K., & Raghavendra, C. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of ACM SIGCOMM 2005, pp. 252–259.

  42. Kang, H., & Kim, D. (2008). Vector routing for delay tolerant networks. In IEEE vehicular technology conference, pp. 1–5.

  43. Lindgren, A., Doria, A., & Schelen, O. (2004). Probabilistic routing in intermittently connected networks. Service Assurance with Partial and Intermittent Resources, 3126(LNCS), 239–254.

  44. Daly, E. M., & Haahr, M. (2009). Social network analysis for routing in disconnected delay-tolerant MANETs. IEEE Transactions on Mobile Computing, 8(5), 606–621.

    Article  Google Scholar 

  45. Leguay, J., Friedman, T., & Conan, V. (2005). DTN routing in a mobility pattern space. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking, pp. 276–283.

  46. Ciobanu, R., Dobre, C., & Cristea, V. (2013). SPRINT: Social prediction-based opportunistic routing. In 2013 IEEE 14th international symposium and workshops: World of wireless, mobile and multimedia networks, pp. 1–7.

  47. Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.

    Article  Google Scholar 

  48. Wen, H., Ren, F., Liu, J., Lin, C., Li, P., & Fang, Y. (2011). A storage-friendly routing scheme in intermittently connected mobile network. IEEE Transactions on Vehicular Technology, 60(3), 1138–1149.

    Article  Google Scholar 

  49. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  50. Kaplan, E. D. (1996). Understanding the GPS: Principles and applications. Artech House.

  51. Capkun, S., Hamdi, M., & Hubaux, J. (2001). GPS-free positioning in mobile ad hoc networks. In Proceedings of the 34th Hawaii international conference on system sciences.

  52. Flower, D. R. (1998). On the properties of bit string-based measures of chemical similarity. Journal of Chemical Information and Modeling, 38(3), 379–386.

    Google Scholar 

  53. Willett, P. (1998). Chemical similarity searching. Journal of Chemical Information and Modeling, 38(6), 983–996.

    Google Scholar 

  54. Jyh-Shing, R. J., Chuen-Tsai, S., & Mizutani, E. (1996). Neuro-fuzzy and soft computing. Upper Saddle River, NJ: Prentice-Hall Inc.

    Google Scholar 

  55. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  56. Network Simulator-2. http://www.isi.edu/nsnam/ns/.

  57. Boldrini, C., & Passarella, A. (2010). HCMM: Modelling spatial and temporal properties of human mobility driven by users’ social relationships. Computer Communications, 33(9), 1056–1074.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Bong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, K., Lee, J., Kim, SK. et al. An adaptive routing algorithm considering position and social similarities in an opportunistic network. Wireless Netw 22, 1537–1551 (2016). https://doi.org/10.1007/s11276-015-1048-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1048-3

Keywords

Navigation