Skip to main content
Log in

Capacity enhancement for a rate-variance-envelop-based admission control in IEEE 802.11e HCCA WLANs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A rate-variance-envelop-based admission control (RVAC) has previously been proposed for IEEE 802.11e wireless networks. By leveraging the multiplexing gain of variable bit rate traffic, RVAC enjoys high network utilization. However, it may suffer from capacity loss due to large polling overheads, and its conservative approach to ensure the quality of service. To overcome these issues, we propose a per-flow polling scheme and derive the capacity by utilizing a stochastic ON–OFF model together with a D/G/1 model. The advantages of our method over RVAC are demonstrated through both analytical and simulation results in respect to the system capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Like RVAC [16], we consider only the aggregate of traffic for mathematical tractability. It should be noted that by traffic aggregation, service differentiation can no longer be possible.

  2. Obviously, \(K\) has an upper bound, which makes \(T_f/K\) equal to the duration of a single bit.

References

  1. IEEE Std 802.11e-2005. (2005). IEEE standard for information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 8: Medium access control (MAC) quality of service enhancements.

  2. Leonovich, A., & Ferng, H.-W. (2013). Modeling the IEEE 802.11e HCCA mode. Wireless Networks, 19(5), 771–783.

    Article  Google Scholar 

  3. Jansang, A., & Phonphoem, A. (2013). A simple analytical model for expected frame waiting time evaluation in IEEE 802.11e HCCA mode. Wireless Personal. Communications, 69(4), 1899–1924.

    Article  Google Scholar 

  4. Ng, B., Tan, Y. F., & Roger, Y. (2013). Improved utilization for joint HCCA-EDCA access in IEEE 802.11e WLANs. Optimization Letters, 7(8), 1711–1724.

    Article  MATH  MathSciNet  Google Scholar 

  5. Lagkas, T. D., Stratogiannis, D. G., & Chatzimisios, P. (2013). Modeling and performance analysis of an alternative to IEEE 802.11e hybrid control function. Telecommunication Systems, 52(4), 1961–1976.

    Article  Google Scholar 

  6. Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2012). QoS in wireless LAN: A comparison between feedback-based and earliest due-date approaches. Computer Communications, 35(3), 298–308.

    Article  Google Scholar 

  7. Skyrianoglou, D., Passas, N., & Salkintzis, A. K. (2006). ARROW: An efficient traffic scheduling algorithm for IEEE 802.11e HCCA. IEEE Transactions on Wireless Communications, 5(12), 3558–3567.

    Article  Google Scholar 

  8. Grilo, A. et al. (2003). A scheduling algorithm for QoS support in IEEE 802.11e networks. IEEE Wireless Communications Magazine, 10(3), 36–43.

  9. Feng, L., & Li, J. (2012). Integer-multiple-spacing-based scheduling for multimedia applications in IEEE 802.11e HCCA wireless networks. Computer Networks, 56, 3767–3782.

    Article  Google Scholar 

  10. Ruscelli, A. L., Cecchetti, G., Alifano, A., & Lipari, G. (2012). Enhancement of QoS support of HCCA schedulers using EDCA function in IEEE 802.11e networks. Ad Hoc Networks, 10(2), 147–161.

    Article  Google Scholar 

  11. Chen, Y.-S., Lee, Y.-W., & Park, J. H. (2011). Enhanced HCCA mechanism for multimedia traffics with QoS support in IEEE 802.11e networks. Journal of Network and Computer Applications, 34, 1566–1571.

    Article  Google Scholar 

  12. Vergados, D. J., Vergados, D. D., & Douligeris, C. (2009). DPS: An architecture for VBR scheduling in IEEE 802.11e HCCA networks with multiple access points. Mobile Networks and Applications, 14(6), 744–759.

    Article  Google Scholar 

  13. Chou, Z.-T., Huang, C.-Q., & Chang, J. M. (2014). QoS provisioning for wireless LANs with multi-beam access point. IEEE Transactions on Mobilie Computing, 13(9), 2113–2127.

    Article  Google Scholar 

  14. Lee, T.-H., & Hsieh, J.-R. (2013). Low-complexity class-based scheduling algorithm for scheduled automatic power-save delivery for wireless LANs. IEEE Transactions on Mobilie Computing, 12(3), 571–580.

    Article  Google Scholar 

  15. Chou, C.-T., Shankar, S., & Shin, K. (2005). Achieving per-stream QoS with distributed airtime allocation and admission control in IEEE 802.11e wireless LANs. IEEE Infocom, 3, 1584–1595.

    Google Scholar 

  16. Gao, D., Cai, J., & Chen, C. W. (2008). Admission control based on rate-variance envelop for VBR traffic over IEEE 802.11e HCCA WLANs. IEEE Transactions on Vehicular Technology, 57(3), 1778–1788.

    Article  Google Scholar 

  17. Sivaraman, V., & Chiussi, F. (2000). Providing end-to-end statistical delay guarantees with earliest deadline first scheduling and per-hop traffic shaping. IEEE Infocom, 2, 631–640.

    Google Scholar 

  18. Kumaran, K., & Mandjes, M. (2001). Multiplexing regulated traffic streams: Design and performance. IEEE Infocom, 1, 527–536.

    Google Scholar 

  19. Knightly, E. W. (1998). Enforceable quality of service guarantees for bursty traffic streams. IEEE Infocom, 2, 635–642.

    Google Scholar 

  20. Gross, D., Shortle, J. F., Thompson, J. M., & Harris, C. M. (2008). Fundamentals of queueing theory (4th ed.). New York: Wiley.

    Book  Google Scholar 

  21. Nakamura, K., & Shioda, S. (2004). Statistical multiplexing of regulated sources having deterministic subadditive envelopes. Journal of the Operations Research Society of Japan, 47(4), 359–378.

    MATH  MathSciNet  Google Scholar 

  22. NS-2 network simulator. http://www.isi.edu/nsnam/ns/.

  23. ITU-T recommendation G.114 (1996). One-way transmission time.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Jen Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JJ., Liang, YJ. & Su, CY. Capacity enhancement for a rate-variance-envelop-based admission control in IEEE 802.11e HCCA WLANs. Wireless Netw 21, 2253–2261 (2015). https://doi.org/10.1007/s11276-015-0912-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0912-5

Keywords

Navigation