Skip to main content
Log in

A priority-based CCA threshold adjusting method for EWM dissemination in vehicular ad-hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Emergency warning message (EWM) transmission insurance is one of the most interesting topics for vehicular ad-hoc network application. Clear channel assessment (CCA) threshold is deemed to be a key factor influencing EWM dissemination performance. Considering vehicle abnormal event hazard level and EWM’s important level, a new parameter, EWM priority rank, is defined. Based on EWM priority rank, a new CCA threshold self-adjusting method is proposed in this paper. Moreover, according to the proposed CCA threshold selection method, an EWM dissemination algorithm is designed. A series of experiments on the sensor network testbed are conducted to evaluate the impact of proposed method on EWM dissemination. The experimental results show that an appropriate CCA threshold is beneficial to increase global dissemination success rate and to shorten packet delivery delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. Communications Surveys & Tutorials IEEE, 16(1), 92–109.

    Article  Google Scholar 

  2. Xiong, N., Vasilakos, A. V., Yang, L. T., Song, L., Pan, Y., Kannan, R., et al. (2009). Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems. Selected Areas in Communications, IEEE Journal on, 27(4), 495–509.

    Article  Google Scholar 

  3. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in networks via “quality of routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  4. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). Codepipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 proceedings IEEE, pp. 100–108.

  5. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  6. Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  7. Zhou, L., Zhang, Y., Song, K., Jing, W., & Vasilakos, A. V. (2011). Distributed media services in p2p-based vehicular networks. IEEE Transactions on Vehicular Technology, 60(2), 692–703.

    Article  Google Scholar 

  8. Esch, J. (2011). Peer-to-peer media streaming: Insights and new developments. Proceedings of the IEEE, 99(12), 2087–2088.

    Article  Google Scholar 

  9. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, pp. 46–54.

  10. Cianfrani, A., Eramo, V., Listanti, M., Polverini, M., & Vasilakos, A. V. (2012). An OSPF-integrated routing strategy for QoS-aware energy saving in IP backbone networks. IEEE Transactions on Network and Service Management, 9(3), 254–267.

    Article  Google Scholar 

  11. Yao, Y., Cao, Q., & Vasilakos, A. V. (2014). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, PP(99), 1. doi:10.1109/TNET.2014.2306592.

  12. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  13. Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  14. Mangrulkar, R. S., & Atique, M. (2010). Routing protocol for delay tolerant network: A survey and comparison. In IEEE international conference on communication control and computing technologies (ICCCCT 2010) 1st, pp. 210–215.

  15. Wang, L., Afanasyev, A., Kuntz, R., Vuyyuru, R., Wakikawa, R., & Zhang, L. (2012). Rapid traffic information dissemination using named data. In Proceedings of the 1st ACM workshop on emerging name-oriented mobile networking design-architecture, algorithms, and applications, pp. 7–12.

  16. Li, M., Zeng, K., & Lou, W. (2011). Opportunistic broadcast of event-driven warning messages in vehicular ad hoc networks with lossy links. Computer Networks, 55(10), 2443–2464.

    Article  Google Scholar 

  17. Sun, M.-T., Feng, W.-C., Lai, T.-H., Yamada, K., Okada, H., & Fujimura, K. (2000). GPS-based message broadcasting for inter-vehicle communication. In 2000 International conference on parallel processing, pp. 279–286.

  18. Korkmaz, G., Ekici, E., Őzgűner, F., & Őzgűner, Ü. (2004). Urban multi-hop broadcast protocol for inter-vehicle communication systems. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks, pp. 76–85.

  19. Mariyasagayam, M. N., Osafune, T., & Lenardi, M. (2007). Enhanced multi-hop vehicular broadcast (MHVB) for active safety applications. In 2007 7th international conference on ITS telecommunications, pp. 1–6.

  20. Cheng, H., Xiong, N., Vasilakos, A. V., Tianruo Yang, L., Chen, G., & Zhuang, X. (2012). Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.

    Article  Google Scholar 

  21. Sutariya, D., & Pradhan, S. N. (2010). Data dissemination techniques in vehicular ad hoc network. International Journal of Computer Applications, 8(10), 35–39.

  22. Fukuhara, T., Warabino, T., Ohseki, T., Saito, K., Sugiyama, K., Nishida, T., et al. (2005). Broadcast methods for inter-vehicle communications system. In 2005 IEEE wireless communications and networking conference (WCNC 2005), vol. 4, pp. 2252–2257.

  23. Vasilakosa, A. V. (2008). Special issue: Ambient intelligence. Information Sciences, 178(3), 585–587.

    Article  Google Scholar 

  24. Demestichas, P. P., Stavroulaki, V. A. G., Papadopoulou, L. M., Vasilakos, A. V., & Theologou, M. E. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man and Cybernetics., 34(1), 69–81. Part C: Applications and Reviews.

    Article  Google Scholar 

  25. Zhong, T., & Qin, Z. G. (2009). Efficient traffic information dissemination algorithm based on ranking. Journal on Communications, 30(8), 1–9.

    MATH  Google Scholar 

  26. Szczurek, P., Xu, B., Lin, J., & Wolfson, O. (2010). Spatio-temporal information ranking in vanet applications. International Journal of Next-Generation Computing, 1(1), 62–86.

  27. Fonseca, B. J. B. (2007). A distributed procedure for carrier sensing threshold adaptation in CSMA-based mobile ad hoc networks. In 2007 IEEE 66th vehicular technology conference, pp. 66–70.

  28. Zhu, J., Guo, X., Yang, L. L., & Conner, W. S. (2004). Leveraging spatial reuse in 802.11 mesh networks with enhanced physical carrier sensing. In 2004 IEEE international conference on communications, vol. 7, pp. 4004–4011.

  29. Han, Q., Liu, Y., Yang, L., & Zeng, L. (2013). Experimental analysis of multi-hop vehicle node CCA threshold selection for ewm transmission. In 2013 International conference on connected vehicles and expo (ICCVE), pp. 857–862.

  30. Neteye. http://neteye.cs.wayne.edu/neteye/home.php

  31. Vehicle infrastructure integration 2009. http://en.wikipedia.org/wiki/Vehicle_infrastructure_integration

  32. Zhang, H. (2011). Experimental analysis of link estimation methods in low power wireless networks. Tsinghua Science & Technology, 16(5), 539–552.

    Article  Google Scholar 

  33. Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd international conference on embedded networked sensor systems, pp. 95–107.

  34. Osafune, T., Lin, L., & Lenardi, M. (2006). Multi-hop vehicular broadcast (MHVB). In 2006 6th International conference on ITS telecommunications, pp. 757–760.

Download references

Acknowledgments

The authors would like to thank Wayne State University for proving the experimental platform C NetEye. Research supported by Fundamental Research Funds for the Central Universities, Project Nos. CDJZR12160002, CDJZR12180001, and CDJZR13180043. Thanks for the open research fund of Chongqing Key Laboratory of Emergency Communications. The authors especially thank the anonymous reviewers for their insightful comments that resulted in a significantly improved paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingqiu Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Zeng, L., He, X. et al. A priority-based CCA threshold adjusting method for EWM dissemination in vehicular ad-hoc networks. Wireless Netw 21, 1563–1576 (2015). https://doi.org/10.1007/s11276-014-0870-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0870-3

Keywords

Navigation