Skip to main content
Log in

Biomass and terpenoids produced by mutant strains of Arthrospira under low temperature and light conditions

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous Cyanobacterium Arthrospira is commercially produced and is a functional, high-value, health food. We identified 5 low temperature and low light intensity tolerant strains of Arthrospira sp. (GMPA1, GMPA7, GMPB1, GMPC1, and GMPC3) using ethyl methanesulfonate mutagenesis and low temperature screening. The 5 Arthrospira strains grew rapidly below 14 °C, 43.75 μmol photons m−2 s−1 and performed breed conservation at 2.5 °C, 8.75 μmol photons m−2 s−1. We used morphological identification and molecular genetic analysis to identify GMPA1, GMPA7, GMPB1 and GMPC1 as Arthrospira platensis, while GMPC3 was identified as Arthrospira maxima. Growth at different culture temperatures was determined at regular intervals using dry biomass. At 16 °C and 43.75 μmol photons m−2 s−1, the maximum dry biomass production and the mean dry biomass productivity of GMPA1, GMPB1, and GMPC1 were 2057 ± 80 mg l−1, 68.7 ± 2.5 mg l−1 day−1, 1839 ± 44 mg l−1, 60.6 ± 1.8 mg l−1 day−1, and 2113 ± 64 mg l−1, 77.7 ± 2.5 mg l−1 day−1 respectively. GMPB1 was chosen for additional low temperature tolerance studies and growth temperature preference. In winter, GMPB1 grew well at mean temperatures <10 °C, achieving 3258 mg dry biomass from a starting 68 mg. In summer, GMPB1 grew rapidly at mean temperatures more than 28 °C, achieving 1140 mg l−1 dry biomass from a starting 240 mg. Phytonutrient analysis of GMPB1 showed high levels of C-phycocyanin and carotenoids. Arthrospira metabolism relates to terpenoids, and the methyl-d-erythritol 4-phosphate pathway is the only terpenoid biosynthetic pathway in Cyanobacteria. The 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from GMPB1 was cloned and phylogenetic analysis showed that GMPB1 is closest to the Cyanobacterium Oscillatoria nigro-viridis PCC711. Low temperature tolerant Arthrospira strains could broaden the areas suitable for cultivation, extend the seasonal cultivation time, and lower production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aikawa S, Joseph A, Yamada R et al (2013) Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ Sci 6:1844–1849. doi:10.1039/c3ee40305j

    Article  CAS  Google Scholar 

  • Andrade MR, Grande RS (2008) Outdoor and indoor cultivation of spirulina platensis in the extreme south of Brazil. Z Naturforsch C 63:85–90

    CAS  Google Scholar 

  • Andreas B, Panwan KD, Lothar K (2004) Phylogenetic realationship of Arthrospira, Phormidium and Spirulina strains from Kenyan and Indian waterbodies. Algol Stud 113:37–56. doi:10.1127/1864-1318/2004/0113-0037

    Article  Google Scholar 

  • Avila-Leon M, Matsudo C, Sato S et al (2012) Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. J Appl Microbiol 112:1086–1094

    Article  CAS  Google Scholar 

  • Baurain D, Renquin L, Grubisic S et al (2002) Remarkable conservation of internally transcribed spacer sequences of Arthrospira (Spirulina) (Cyanophyceae, Cyanobacteria) strains from four continents and of recent and 30-year-old dried samples from African. J Phycol 38:384–393. doi:10.1046/j.1529-8817.2002.01010.x

    Article  CAS  Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor and Francis, London, pp 131–158

    Google Scholar 

  • Belay A (2008) Spirulina (Arthrospira): production and quality assurance. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton, pp 1–26

    Google Scholar 

  • Castro GF, Rizzo RF, Passos TS et al (2015) Biomass production by Arthrospira platensis under different culture conditions. Food Sci Technol (Campinas) 35:18–24

    Article  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  CAS  Google Scholar 

  • Chaturvedi R, Fujita Y (2006) Isolation of enhanced eicosapentaenoic acid producing mutants of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level. Phycol Res 54: 208–219

    Article  CAS  Google Scholar 

  • Chen CY, Kao PC, Tsai CJ et al (2013) Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour Technol 145:307–312

    Article  CAS  Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47(4):551–578

    CAS  Google Scholar 

  • Cohen Z (1997) Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In: Vonshak A (ed) Spirulina (Arthrospira) platensis: physiology, cell-biology and biotechnology. Taylor and Francis, London, pp 175–204

    Google Scholar 

  • Colla LM, Bertolin TE, Costa JAV (2004) Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations. Z Naturforsch C 59:55–59

    Article  CAS  Google Scholar 

  • Colla LM, Reinehr CO, Reichert C, Costa JAV (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 98:1489–1493

    Article  CAS  Google Scholar 

  • Depraetere O, Deschoenmaeker F, Badri H et al (2015a) Trade-off between growth and carbohydrate accumulation in nutrient-limited Arthrospira sp. PCC 8005 studied by integrating transcriptomic and proteomic approaches. PLoS ONE 10(7):e0132461. doi:10.1371/journal.pone.0132461

  • Depraetere O, Pierre G, Noppe W et al (2015b) Influence of culture medium recycling on the performance of Arthrospira platensis cultures. Algal Res 10:48–54

  • Ding ML, Yu ZQ (1997) Spirulina industry in China: present status and future prospects. J Appl Phycol 9:25–28

    Article  Google Scholar 

  • Doan TTY, Obbard JP (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res 1:17–21

    Article  CAS  Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    Article  CAS  Google Scholar 

  • Gao KS, Li P, Watanabe T, Walter Helbling E (2008) Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) platensis (cyanophyta). J Phycol 44:777–786

    Article  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9:625–644

    Article  CAS  Google Scholar 

  • Gutiérrez-Salmeán G, Fabila-Castillo L, Chamorro-Cevallos G (2015) Nutritional and toxicological aspects of Spirulina (Arthrospira). Nutr Hosp 32(1):34–40

    Google Scholar 

  • Halfmann C, Gu L, Zhou R (2014) Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem 16:3175–3185. doi:10.1039/c3gc42591f

    Article  CAS  Google Scholar 

  • Hu ZM, Zeng XQ, Wang AH et al (2004) An efficient method for DNA isolation from red algae. J Appl Phycol 16:161–166

    Article  CAS  Google Scholar 

  • Koru E (2012) Earth food Spirulina (Arthrospira): production and quality standarts. In: El-Samragy Y (ed) Food additive. InTech, Rijeka, pp 191–203

    Google Scholar 

  • Kuddus M, Singh P, Thomas G, Al-Hazimi A (2013) Recent developments in production and biotechnological applications of C-phycocyanin. Biomed Res Int. doi:10.1155/2013/742859

    Google Scholar 

  • Kudoh K, Kawano Y, Hotta S et al (2014) Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis. J Biosci Bioeng 118:20–28

    Article  CAS  Google Scholar 

  • Langlois A, Lebel O (2010) To cyclopropanate or not to cyclopropanate? A look at the effect of cyclopropanation on the performance of biofuels. Energy Fuels 24:5257–5263

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, New York, pp F4.3.1–F4.3.8

    Google Scholar 

  • Madhulika S, Rizwana T, Rajendra S et al (2016) Influence of light intensity, temperature and CO2 concentration on growth and lipids in green algae and cyanobacteria. Indian J Exp Biol 54:482–487

    Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    Article  CAS  Google Scholar 

  • Markou G, Iconomou D, Muylaert K (2016) Applying raw poultry litter leachate for the cultivation of Arithrospira platensis and Chlorella vulgaris. Algal Res 13:79–84

    Article  Google Scholar 

  • Mühling M, Somerfield P, Harris N et al (2006) Phenotypic analysis of Arthrospira (Spirulina) strains (Cyanophyceae). Phycologia 45:148–157

    Article  Google Scholar 

  • Ogato T, Kifle D (2014) Morphological variability of Arthrospira (Spirulina) fusiformis (Cyanophyta) in relation to environmental variables in the tropical soda lake Chitu, Ethiopia. Hydrobiologia 738:21–33

    Article  CAS  Google Scholar 

  • Pattanaik B, Lindberg P (2015) Terpenoids and Their Biosynthesis in Cyanobacteria. Life (Basel) 5:269–293. doi:10.3390/life5010269

    Google Scholar 

  • Piorrect M, Klaus-Hinnerk B, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    Article  Google Scholar 

  • Price GD, Badger MR (1989) Isolation and characterization of high CO2-requiring-mutants of cyanobacterium Synechococcus the PCC7942. Plant Physiol 91:514–525

    Article  CAS  Google Scholar 

  • Qiao C, Tian XY, Li SY (2013) The classification and morphological anatomical structure of Spirulina (Arithrospira). In: Qiao C, Li SY (eds) Spirulina (Arithrospira) in Alkaline Lakes of the Erdos Plateau. Science Press, Beijing, pp 43–76

    Google Scholar 

  • Raina P, Anshuman G, Anamika T (2011) Impact of environmental factors on the biomass production of spirulina in different conditions. VEGETOS 24:142–148

    Google Scholar 

  • Richmond A (1986) Microalgae of economic potential In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca-Raton, Florida, pp 199–243

    Google Scholar 

  • Rio-Chanona EAD, Zhang DD, Xie YP et al (2015) Dynamic simulation and optimization for Arthrospira platensis growth and C-phycocyanin production. Ind Eng Chem Res 54:10606–10614

    Article  Google Scholar 

  • Rohmer M (2003) Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosyntheis. Elucidation and distribution. Pure Appl Chem 75:375–387

    Article  CAS  Google Scholar 

  • Rout NP, Khandual S, Gutierrez-Mora A et al (2015) Divergence in three newly identified Arthrospira species from Mexico. World J Microbiol Biotechnol 31:1157–1165

    Article  Google Scholar 

  • Silva AFD, Lourenco SO, Chaloub RM (2009) Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat Bot 91:291–297

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassana C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9(3):297–304

    Article  CAS  Google Scholar 

  • Tomaselli L (1997) Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In: Vonshak A (ed) Spirulina (Arthrospira) platensis: physiology, cell-biology and biotechnology. Taylor and Francis, London, pp 79–99

    Google Scholar 

  • Toyoshima M, Aikawa S, Yamagishi T et al (2015) A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39. J Appl Phycol 27:2191–2202

    Article  CAS  Google Scholar 

  • Trabelsi L, Ben Ouada H, Bacha H, Ghoul M (2009) Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. J Appl Phycol 21:405–412

    Article  CAS  Google Scholar 

  • Vonshak A, Tomaselli L (2000) Arthrospira (Spirulina): systematics and ecophysiology. In: Whitton BA, Potts M (ed) The ecology of Cyanobacteria. Kluwer, Dordrecht, pp 505–522

    Google Scholar 

  • Vonshak A, Laorawat S, Bunnag B, Tanticharoen M (2014) The effect of light availability on the photosynthetic activity and productivity of outdoor cultures of Arthrospira platensis (Spirulina). J Appl Phycol 26:1309–1315

    Article  CAS  Google Scholar 

  • Wilmotte A, Turner S, Van de Peer Y, Pace NR (1992) Taxonomic study of marine oscillatoriacean strains (cyanobacteria) with narrow trichomes II. Nucletide sequence analysis of the 16S ribosomal RNA. J Phycol 28:828–838

    Article  CAS  Google Scholar 

  • Xie YP, Jin YW, Zeng XH et al (2015) Fed-batch strategy for enhancing cell growth and C-Phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresour Technol 180:281–287

    Article  CAS  Google Scholar 

  • Yang ZY, Pan WS, Nie Y, Luo H, Wang JW (2014) Breeding of Shiraia sp. strain with high-yield hypocrellin by EMS mutation. Chin J Bioprocess Eng. doi:10.3969/jissn.1672-3678.2014.02.005

    Google Scholar 

  • Yoshikawa N, Belay A (2008) Single-laboratory validation of a method for the determination of c-phycocyanin and allophycocyanin in Spirulina (Arithrospira) supplements and raw materials by spectrophotometry. J AOAC Int 91(3):524–529

    CAS  Google Scholar 

  • Zittelli GC, Tomasello V, Pinzani E et al (1996) Outdoor cultivation of Arithrospira platensis during autumn and winter in temperate climates. J Appl Phycol 8:293–301

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Jiangsu Cibainian Nutrition Food Co., Ltd Dongtai City Top Bio-Engineering Co., Ltd for providing Arthrospira strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songdong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Shen, S., Wu, H. et al. Biomass and terpenoids produced by mutant strains of Arthrospira under low temperature and light conditions. World J Microbiol Biotechnol 33, 33 (2017). https://doi.org/10.1007/s11274-016-2199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2199-9

Keywords

Navigation