Skip to main content
Log in

Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8–65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bretagne S, Costa JM, Besmond C, Carsique R, Calderone R (1997) Microsatellite polymorphism in the promoter sequence of the elongation factor 3 gene of Candida albicans as the basis for a typing system. J Clin Microbiol 35:1777–1780

    CAS  Google Scholar 

  • Carpenter C, Broadbent J (2009) External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods. J Food Sci 74:R12–R15

    Article  CAS  Google Scholar 

  • Causton HC et al (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    Article  CAS  Google Scholar 

  • Deutschbauer AM, Davis RW (2005) Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet 37:1333–1340

    Article  CAS  Google Scholar 

  • Flint J, Mott R (2001) Finding the molecular basis of quatitative traits: successes and pitfalls. Nat Rev Genet 2:437–445

    Article  CAS  Google Scholar 

  • Gatbonton T et al (2006) Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2:e35

    Article  Google Scholar 

  • Holyoak CD, Bracey D, Piper PW, Kuchler K, Coote PJ (1999) The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181:4644–4652

    CAS  Google Scholar 

  • Hu X et al (2007) Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175:1479–1487

    Article  CAS  Google Scholar 

  • Jubany S et al (2008) Toward a global database for the molecular typing of Saccharomyces cerevisiae strains. FEMS Yeast Res 8:472–484. doi:10.1111/j.1567-1364.2008.00361.x

    Article  CAS  Google Scholar 

  • Katou T, Namise M, Kitagaki H, Akao T, Shimoi H (2009) QTL mapping of sake brewing characteristics of yeast. J Biosci Bioeng 107:383–393

    Article  CAS  Google Scholar 

  • Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6:924–936

    Article  CAS  Google Scholar 

  • Kren A et al (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23:1775–1785

    Article  CAS  Google Scholar 

  • Lander E, Schork N (1994) Genetic dissection of complex traits. Science (New York, NY) 265:2037

    Article  CAS  Google Scholar 

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381

    Article  CAS  Google Scholar 

  • McCusker JH, Clemons KV, Stevens DA, Davis RW (1994) Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136:1261–1269

    CAS  Google Scholar 

  • Meijnen J-P et al (2016) Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnol Biofuels. doi:10.1186/s13068-015-0421-x

    Google Scholar 

  • Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010a) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:13

    Article  Google Scholar 

  • Mira NP, Palma M, Guerreiro JF, Sa-Correia I (2010b) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:79. doi:10.1186/1475-2859-9-79

    Article  Google Scholar 

  • Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6:1274–1280

    Article  CAS  Google Scholar 

  • Pampulha M, Loureiro-Dias M (1990) Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol 34:375–380

    Article  CAS  Google Scholar 

  • Pampulha ME, Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184:69–72

    Article  CAS  Google Scholar 

  • Perlstein EO, Ruderfer DM, Ramachandran G, Haggarty SJ, Kruglyak L, Schreiber SL (2006) Revealing complex traits with small molecules and naturally recombinant yeast strains. Chem Biol 13:319–327

    Article  CAS  Google Scholar 

  • Piper P et al (1998) The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257–4265

    Article  CAS  Google Scholar 

  • Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642

    Article  CAS  Google Scholar 

  • Romano GH, Gurvich Y, Lavi O, Ulitsky I, Shamir R, Kupiec M (2010) Different sets of QTLs influence fitness variation in yeast. Mol Syst Biol. doi:10.1038/msb.2010.1

    Google Scholar 

  • Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371. doi:10.1007/s004120000089

    Article  CAS  Google Scholar 

  • Schlötterer C, Wiehe T (1999) Microsatellites, a neutral marker to infer selective sweeps. In: Goldstein DB, Schlötterer C (eds) Microsatellites-evolution and applications. Oxford University Press, Oxford, pp 238–248

    Google Scholar 

  • Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416:326–330

    Article  CAS  Google Scholar 

  • Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting dna mismatch repair. Nature 365:274–276. doi:10.1038/365274a0

    Article  CAS  Google Scholar 

  • Tenreiro S, Rosa PC, Viegas CA, Sá-Correia I (2000) Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16:1469–1481

    Article  CAS  Google Scholar 

  • This P et al (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458. doi:10.1007/s00122-004-1760-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK2012363) and the Outstanding Youth Foundation of Jiangsu Province (Grant No. BK20140002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Additional information

Peng Geng and Yin Xiao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, P., Xiao, Y., Hu, Y. et al. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae . World J Microbiol Biotechnol 32, 145 (2016). https://doi.org/10.1007/s11274-016-2101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2101-9

Keywords

Navigation