Skip to main content
Log in

Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbiologically influenced corrosion (MIC), also known as biocorrosion, is caused by corrosive biofilms. MIC is a growing problem, especially in the oil and gas industry. Among various corrosive microbes, sulfate reducing bacteria (SRB) are often the leading culprit. Biofilm mitigation is the key to MIC mitigation. Biocide applications against biofilms promote resistance over time. Thus, it is imperative to develop new biodegradable and cost-effective biocides for large-scale field applications. Using the corrosive Desulfovibrio vulgaris (an SRB) biofilm as a model biofilm, this work demonstrated that a cocktail of glyceryl trinitrate (GTN) and caprylic acid (CA) was very effective for biofilm prevention and mitigation of established biofilms on C1018 carbon steel coupons. The most probable number sessile cell count data and confocal laser scanning microscope biofilm images proved that the biocide cocktail of 25 ppm (w/w) GTN + 0.1 % (w/w) CA successfully prevented the D. vulgaris biofilm establishment on C1018 carbon steel coupons while 100 ppm GTN + 0.1 % CA effectively mitigated pre-established D. vulgaris biofilms on C1018 carbon steel coupons. In both cases, the cocktails were able to reduce the sessile cell count from 106 cells/cm2 to an undetectable level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bath PM, Pathansali R, Iddenden R, Bath FJ (2001) The effect of transdermal glyceryl trinitrate, a nitric oxide donor, on blood pressure and platelet function in acute stroke. Cerebrovasc Dis Basel Switz 11:265–272

    Article  CAS  Google Scholar 

  • Bhat S, Sharma VK, Thomas S, Anto PF, Singh SK (2011) 8-in Pipeline from group gathering station to central tank farm. Mater Perform 50:50–53

    Google Scholar 

  • CFR—Code of Federal Regulations Title 21. US Food and Drug Administration. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1025. Accessed 1 April 2015

  • Costerton JW (2007) The biofilm primer. Springer, Berlin, New York

    Book  Google Scholar 

  • Elkayam DU, Aronow WS (1982) Glyceryl trinitrate (nitroglycerin) ointment and isosorbide dinitrate: a review of their pharmacological properties and therapeutic use. Drugs 23:165–194

    Article  CAS  Google Scholar 

  • Gaines RH (1910) Bacterial activity as a corrosive influence in the soil. J Ind Eng Chem 2:128–130

    Article  Google Scholar 

  • Greaves R, Miller J, O’Donnell L, McLean A, Farthing M (1998) Effect of the nitric oxide donor, glyceryl trinitrate, on human gall bladder motility. Gut 42:410–413

    Article  CAS  Google Scholar 

  • Güngör ND, Çotuk A, Ilhan-Sungur E, Cansever N (2015) Effect of mixed-species biofilm on copper surfaces in cooling water system. J Mater Eng Perform 24:848–858

    Article  Google Scholar 

  • Hinkson D, Wheeler C, Oney C (2013) MIC in a CO2 gathering line: a field case study of microbiologically influenced corrosion. Corrosion/2013 Paper. No. C2013-0002276. NACE International, Houston, TX

  • Jacobson GA (2007) Corrosion at Prudhoe Bay: a lesson on the line. Mater Perform 46:26–34

    Google Scholar 

  • Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85:295–350

    Article  CAS  Google Scholar 

  • Millet A, Bettaieb A, Renaud F, Prevotat L, Hammann A, Solary E, Mignotte B, Jeannin J-F (2002) Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 123:235–246

    Article  CAS  Google Scholar 

  • Nair MKM, Vasudevan P, Hoagland T, Venkitanarayanan K (2004) Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in milk by caprylic acid and monocaprylin. Food Microbiol 21:611–616

    Article  CAS  Google Scholar 

  • Nair MKM, Joy J, Vasudevan P, Hinckley L, Hoagland TA, Venkitanarayanan KS (2005) Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. J Dairy Sci 88:3488–3495

    Article  CAS  Google Scholar 

  • Rahman A, Ahmed S, Khan N, Sultana S, Athar M (1999) Glyceryl trinitrate, a nitric oxide donor, suppresses renal oxidant damage caused by potassium bromate. Redox Rep Commun Free Radic Res 4:263–269

    Article  CAS  Google Scholar 

  • Salvemini D, Pistelli A, Mollace V (1993) Release of nitric oxide from glyceryl trinitrate by captopril but not enalaprilat: in vitro and in vivo studies. Br J Pharmacol 109:430–436

    Article  CAS  Google Scholar 

  • Sprong RC, Hulstein MFE, der Meer RV (2001) Bactericidal activities of milk lipids. Antimicrob Agents Chemother 45:1298–1301

    Article  CAS  Google Scholar 

  • Srinivasan R, Stewart PS, Griebe T, Chen C-I, Xu X (1995) Biofilm parameters influencing biocide efficacy. Biotechnol Bioeng 46:553–560

    Article  CAS  Google Scholar 

  • Stewart PS, Costerton W (2001) Antibiotic resistance of bacteria in biofilms. The Lancet 358:135–138

    Article  CAS  Google Scholar 

  • Su P, Fuller DB, Global FM (2014) Corrosion and corrosion mitigation in fire protection systems. http://www.fmglobal.com/assets/pdf/p14180.pdf. Accessed 23 Dec 2014

  • Summer JS, Summer NS, Janes C, Liu M, Gill JJ, Young R (2011) Phage of sulfate reducing bacteria isolated from high saline environment. Corrosion/2011 Paper. No. 11222. NACE International, Houston, TX

  • Tiratsoo J (2013) The ultimate guide to unpiggable pipelines. Pipelines International, Austin, TX. http://pipelinesinternational.com/shop/the_ultimate_guide_to_unpiggable_pipelines/81249. Accessed 20 June 2013

  • Videla HA (1996) Manual of biocorrosion, 1st edn. CRC-Press, Boca Raton, p 304

    Google Scholar 

  • Videla HA (2002) Prevention and control of biocorrosion. Int Biodeterior Biodegrad 49:259–270

    Article  CAS  Google Scholar 

  • Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781

    Article  CAS  Google Scholar 

  • Xu D, Li Y, Gu T (2014) d-Methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris biofilm and biocorrosion pitting. Mater Corros 65:837–845

    Article  CAS  Google Scholar 

  • Yu Z, Zhang J, Zhao X, Zhao X, Duan J, Song X (2014) Effects of microorganism on corrosion performance of zinc in natural seawater. Int J Electrochem Sci 9:7587–7595

    Google Scholar 

  • Zheng B, Li K, Liu H, Gu T (2014) Effects of magnetic fields on microbiologically Influenced corrosion of 304 stainless steel. Ind Eng Chem 53:48–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the MD Anderson Cancer Center in Houston, TX.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Xu or T. Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, P., Cai, W. et al. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel. World J Microbiol Biotechnol 32, 23 (2016). https://doi.org/10.1007/s11274-015-1968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-015-1968-1

Keywords

Navigation