Skip to main content
Log in

In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Continuous monoculture of Lanzhou lily (Lilium davidii var. unicolor Cotton) results in frequent incidence of fusarium wilt caused by Fusarium oxysporum. Phthalic acid (PA), a principal autotoxin from root exudates of Lanzhou lily, is involved in soil sickness by inducing autotoxicity. The aim of this study was to evaluate the direct allelopathic effects of PA on the growth, development and pathogenicity of F. oxysporum in vitro based on an ecologically relevant soil concentration. The results showed that PA slightly but not significantly inhibited the colony growth (mycelial growth) and fungal biomass of F. oxysporum at low concentrations ranging from 0.05 to 0.5 mM, and significantly inhibited the colony growth at the highest concentration (1 mM). None of the PA concentrations tested significantly inhibited the conidial germination and sporulation of F. oxysporum in liquid medium. However, mycotoxin (fusaric acid) yield and pathogenesis-related hydrolytic enzyme (protease, pectinase, cellulase, and amylase) activities were significantly stimulated in liquid cultures of F. oxysporum containing PA at ≥0.25 mM. We conclude that PA at a soil level (i.e. 0.25 mM) is involved in plant–pathogen allelopathy as a stimulator of mycotoxin production and hydrolytic enzyme activities in F. oxysporum, which is possibly one of the mechanisms responsible for promoting the wilt disease of lily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14

    Article  CAS  Google Scholar 

  • Asao T, Kitazawa H, Ushio K, Sueda Y, Ban T, Pramanik MHR (2007) Autotoxicity in some ornamentals with the means to overcome it. HortScience 42:1346–1350

    Google Scholar 

  • Bacon C, Porter J, Norred W, Leslie J (1996) Production of fusaric acid by Fusarium species. Appl Environ Microb 62:4039–4043

    CAS  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Berestetskiy A (2008) A review of fungal phytotoxins: from basic studies to practical use. Appl Biochem Microbiol 44:453–465

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, α and β. Method Enzymol 1:149–158

    Article  CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bouizgarne B, EI-Maarouf-Bouteau H, Frankart C C et al (2006) Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. New Phytol 169:209–218

    Article  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microb 74:738–744

    Article  CAS  Google Scholar 

  • Capasso R, Evidente A, Cutignano A, Vurro M, Zonno MC, Bottalico A (1996) Fusaric and 9, 10-dehydrofusaric acids and their methyl esters from Fusarium nygamai. Phytochemistry 41:1035–1039

    Article  CAS  Google Scholar 

  • D’Alton A, Etherton B (1984) Effects of fusaric acid on tomato root hair membrane potentials and ATP levels. Plant Physiol 74:39–42

    Article  Google Scholar 

  • Desjardins AE, Hohn TM (1997) Mycotoxins in plant pathogenesis. Mol Plant Microbe Interact 10:147–152

    Article  CAS  Google Scholar 

  • Dong X, Ling N, Wang M, Shen QR, Guo SW (2012) Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiol Biochem 60:171–179

    Article  CAS  Google Scholar 

  • Drapeau GR, Boily Y, Houmard J (1972) Purification and properties of an extracellular protease of Staphylococcus aureus. J Biol Chem 247:6720–6726

    CAS  Google Scholar 

  • Duke SO (2010) Allelopathy: current status of research and future of the discipline: a Commentary. Allelopathy J 25:17–29

    Google Scholar 

  • EI Modafar C, EI Boustani E (2001) Cell wall-bound phenolic acid and lignin contents in date palm as related to its resistance to Fusarium oxysporum. Biol Plant 44:125–130

    Article  Google Scholar 

  • Eveleigh DE, Mandels M, Andreotti R, Roche C (2009) Measurement of saccharifying cellulase. Biotechnol Biofuels. doi:10.1186/1754-6834-2-21

    Google Scholar 

  • Forsbach-Birk V, McNealy T, Shi CW, Lynch D, Marre R (2004) Reduced expression of the global regulator protein CsrA in Legionella pneumophila affects virulence-associated regulators and growth in Acanthamoeba castellanii. Int J Med Microbiol 294:15–25

    Article  CAS  Google Scholar 

  • Gapillout I, Milat ML, Blein JP (1996) Effects of fusaric acid on cells from tomato cultivars resistant or susceptible to Fusarium oxysporum f. sp. lycopersici. Eur J Plant Pathol 102:127–132

    Article  CAS  Google Scholar 

  • Hao WY, Ren LX, Ran W, Shen QR (2010) Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum. Plant Soil 336:485–497

    Article  CAS  Google Scholar 

  • He CN, Gao WW, Yang JX, Bi W, Zhang XS, Zhao YJ (2009) Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318:63–72

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant Microbe Interact 19:1121–1126

    Article  CAS  Google Scholar 

  • Kikot GE, Hours RA, Alconada TM (2009) Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J Basic Microb 49:231–241

    Article  CAS  Google Scholar 

  • Klechkovskaya E, Adamovskaya V, Wolf G, Vovchuk S (1998) The role of hydrolases and trypsin inhibitor in development of winter wheat resistance to Fusarium infection. Russ J Plant Physiol 45:728–735

    CAS  Google Scholar 

  • Kong CH, Chen LC, Xu XH, Wang P, Wang SL (2008) Allelochemicals and activities in a replanted chinese fir (Cunninghamia lanceolata (Lamb.) Hook) tree ecosystem. J Agric Food Chem 56:11734–11739

    Article  CAS  Google Scholar 

  • Li CY, Chen S, Zuo CW, Kuang RB, Yi GJ (2011) Identification of beauvericin, a novel mycotoxin from Fusarium oxysporum f. sp. cubense. Acta Hortic Sinica 38:2092–2098

    CAS  Google Scholar 

  • Li ZF, Yang YQ, Xie DF, Zhu LF, Zhang ZG, Lin WX (2012) Identification of autotoxic compounds in fibrous roots of Rehmannia (Rehmannia glutinosa Libosch.). PLoS One 7(1):e28806. doi:10.1371/journal.pone.0028806

    Article  CAS  Google Scholar 

  • Li XG, Zhang TL, Wang XX, Hua K, Zhao L, Han ZM (2013) The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int J Biol Sci 9:164–173

    Article  Google Scholar 

  • Ling N, Huang QW, Guo SW, Shen QR (2011) Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f. sp. niveum. Plant Soil 341:485–493

    Article  CAS  Google Scholar 

  • Logrieco A, Mule G, Moretti A, Bottalico A (2002) Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur J Plant Pathol 108:597–609

    Article  CAS  Google Scholar 

  • Logrieco A, Bottalico A, Mulé G, Moretti A, Perrone G (2003) Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur J Plant Pathol 109:645–667

    Article  CAS  Google Scholar 

  • Luong TT, Newell SW, Lee CY (2003) mgr, a novel global regulator in Staphylococcus aureus. J Bacteriol 185:3703–3710

    Article  CAS  Google Scholar 

  • Magnusson LU, Farewell A, Nystrom T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13:236–242

    Article  CAS  Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distributions of two Mojave Desert shrubs. Ecology 73:2145–2151

    Article  Google Scholar 

  • Manici L, Caputo F, Babini V (2004) Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant Soil 263:133–142

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nicol RW, Yousef L, Traquair JA, Bernards MA (2003) Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry 64:257–264

    Article  CAS  Google Scholar 

  • Nigh Jr EL (1989) Stress factors influencing Fusarium infection in asparagus. In: Falavigna A, Schiavi M (eds) ISHS Acta Horticulturae 271: VII International asparagus symposium. ISHS, Wageningen, pp 315–322

  • Pan K, Xu L, Wu F, Han Z, Chu LR, Qiu CF (2013) Fungicidal effects of wheat root exudates on Fusarium oxysporum f. sp niveum. Allelopathy J 32:257–265

    Google Scholar 

  • Pekkarinen A, Mannonen L, Jones B, Niku-Paavola ML (2000) Production of proteases by Fusarium species grown on barley grains and in media containing cereal proteins. J Cereal Sci 31:253–261

    Article  CAS  Google Scholar 

  • Pramanik M, Asao T, Yamamoto T, Matsui Y (2001) Sensitive bioassay to evaluate toxicity of aromatic acids to cucumber seedlings. Allelopathy J 8:161–169

    Google Scholar 

  • Qi PF, Johnston A, Balcerzak M et al (2012) Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Fungal Biol 116:413–426

    Article  CAS  Google Scholar 

  • Reignault P, Sancholle M (2005) Plant–pathogen interactions: will the understanding of common mechanisms lead to the unification of concepts? CR Biol 328:821–833

    Article  Google Scholar 

  • Rosado-Álvareza C, Molinero-Ruiz L, Rodríguez-Arcosc R, Basallote-Ureba MJ (2014) Antifungal activity of asparagus extracts against phytopathogenic Fusarium oxysporum. Sci Hortic 171:51–57

    Article  Google Scholar 

  • Rouanet C, Reverchon S, Rodionov DA, Nasser W (2004) Definition of a consensus DNA-binding site for PecS, a global regulator of virulence gene expression in Erwinia chrysanthemi and identification of new members of the PecS regulon. J Biol Chem 279:30158–30167

    Article  CAS  Google Scholar 

  • Shang QH, Zhao X, Li YY, Xie ZK, Wang RY (2014) First report of Fusarium tricinctum causing stem and root rot on Lanzhou lily (Lilium davidii var. unicolor Cotton) in China. Plant Dis 98:999

    Article  Google Scholar 

  • Silva D, Tokuioshi K, da Silva Martins E, Da Silva R, Gomes E (2005) Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem 40:2885–2889

    Article  CAS  Google Scholar 

  • Sonenshein AL (2005) CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr Opin Microbiol 8:203–207

    Article  CAS  Google Scholar 

  • Stankovic S, Levic J, Petrovic T, Logrieco A, Moretti A (2007) Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur J Plant Pathol 118:165–172

    Article  CAS  Google Scholar 

  • Stewart BJ, Leatherwood J (1976) Derepressed synthesis of cellulase by Cellulomonas. J Bacteriol 128:609–615

    CAS  Google Scholar 

  • Tan DC, Flematti GR, Ghisalberti EL, Sivasithamparam K, Chakraborty S, Obanor F, Barbetti MJ (2011) Mycotoxins produced by Fusarium species associated with annual legume pastures and ‘sheep feed refusal disorders’ in Western Australia. Mycotox Res 27:123–135

    Article  CAS  Google Scholar 

  • Tegmark K, Karlsson A, Arvidson S (2000) Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol 37:398–409

    Article  CAS  Google Scholar 

  • Toyoda H, Hashimoto H, Utsumi R, Kobayashi H, Ouchi S (1988) Detoxification of fusaric acid by a fusaric acid-resistant mutant of Pseudomonas solanacearum and its application to biological control of Fusarium wilt of tomato. Phytopathology 78:1307–1311

    Article  CAS  Google Scholar 

  • Venter SL, Steyn P (1998) Correlation between fusaric acid production and virulence of isolates of Fusarium oxysporum that causes potato dry rot in South Africa. Potato Res 41:289–294

    Article  CAS  Google Scholar 

  • Wagacha JM, Muthomi JW (2007) Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Prot 26:877–885

    Article  CAS  Google Scholar 

  • Walter S, Nicholson P, Doohan FM (2010) Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66

    Article  CAS  Google Scholar 

  • Wang H, Ng T (1999) Pharmacological activities of fusaric acid (5-butylpicolinic acid). Life Sci 65:849–856

    Article  CAS  Google Scholar 

  • Wang RY, Wang GP, Zhao Q, Zhang Y, An LZ, Wang Y (2010) Expression, purification and characterization of the Lily symptomless virus coat protein from Lanzhou Isolate. Virol J. doi:10.1186/1743-422X-7-34

    Google Scholar 

  • Wanjiru WM, Zhensheng K, Buchenauer H (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol 108:803–810

    Article  CAS  Google Scholar 

  • Wood TM, Garcia-Campayo V (1991) Enzymology of cellulose degradation. In: Ratledge C (ed) Physiology of biodegradative microorganisms. Springer, Berlin, pp 147–161

    Chapter  Google Scholar 

  • Wu HS, Raza W, Fan JQ et al (2008a) Antibiotic effect of exogenously applied salicylic acid on in vitro soilborne pathogen, Fusarium oxysporum f. sp. niveum. Chemosphere 74:45–50

    Article  CAS  Google Scholar 

  • Wu HS, Raza W, Fan JQ, Sun YG, Bao W, Shen QR (2008b) Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f. sp. niveum. J Agric Food Chem 56:1316–1321

    Article  CAS  Google Scholar 

  • Wu HS, Liu DY, Ling N, Bao W, Ying RR, Shen QR (2009a) Influence of root exudates of watermelon on Fusarium oxysporum f. sp. niveum. Soil Sci Soc Am J 73:1150–1156

    Article  CAS  Google Scholar 

  • Wu HS, Wang Y, Bao W et al (2009b) Responses of Fusarium oxysporum f. sp. niveum to exogenously added sinapic acid in vitro. Biol Fertil Soils 45:443–447

    Article  CAS  Google Scholar 

  • Wu HS, Wang Y, Zhang CY et al (2009c) Physiological and biochemical responses of in vitro Fusarium oxysporum f. sp. niveum to benzoic acid. Folia Microbiol 54:115–122

    Article  CAS  Google Scholar 

  • Wu HS, Luo J, Raza W et al (2010a) Effect of exogenously added ferulic acid on in vitro Fusarium oxysporum f. sp. niveum. Sci Hortic 124:448–453

    Article  CAS  Google Scholar 

  • Wu HS, Shen SH, Han JM, Liu YD, Liu SD (2010b) The effect in vitro of exogenously applied p-hydroxybenzoic acid on Fusarium oxysporum f. sp. niveum. Phytopathol Mediterr 48:439–446

    Google Scholar 

  • Wu HS, Liu YD, Zhao GM, Chen XQ, Yang XN, Zhou XD (2011) Succinic acid inhibited growth and pathogenicity of in vitro soil-borne fungus Fusarium oxysporum f. sp. niveum. Acta Agr Scand B-S P 61:404–409

  • Wu ZJ, Xie ZK, Yang L, Wang RY, Guo ZH, Zhang YB, Wang L, Kutcher HR (2015) Identification of autotoxins from root exudates of Lanzhou lily (Lilium davidii var. unicolor). Allelopathy J 35:35–48

    Google Scholar 

  • Ye SF, Yu JQ, Peng YH, Zheng JH, Zou LY (2004) Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263:143–150

    Article  CAS  Google Scholar 

  • Yu JQ, Shou SY, Qian YR, Zhu ZJ, Hu WH (2000) Autotoxic potential of cucurbit crops. Plant Soil 223:149–153

    Article  Google Scholar 

  • Zhang SS, Jin YL, Zhu WJ, Tang JJ, Hu SJ, Zhou TS, Chen X (2010) Baicalin released from Scutellaria baicalensis induces autotoxicity and promotes soilborn pathogens. J Chem Ecol 36:329–338

    Article  CAS  Google Scholar 

  • Zhou B, Kong CH, Li YH, Wang P, Xu XH (2013) Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. J Agric Food Chem 61:5310–5317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ningxia Agricultural Comprehensive Development Office (NTKJ2014091), National Natural Science Foundation of China (31370447) and Hundred Talents Program of CAS “Molecular mechanism of biological control on plant diseases.”

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongkui Xie.

Additional information

Zhijiang Wu and Liu Yang have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Yang, L., Wang, R. et al. In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily. World J Microbiol Biotechnol 31, 1227–1234 (2015). https://doi.org/10.1007/s11274-015-1872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1872-8

Keywords

Navigation