Skip to main content
Log in

Isolation of genes conferring salt tolerance from Piriformospora indica by random overexpression in Escherichia coli

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Piriformospora indica, a root endophytic fungus identified in the Indian Thar desert, colonizes the roots of plants and provides resistance towards biotic stress as well as tolerance to abiotic stress in the plants. Despite its positive impact on the host, little is known about the P. indica genes that are involved in salt stress tolerance. Therefore this study was conducted to identify and isolate high salinity-tolerance genes from P. indica. Thirty-six salinity-tolerance genes were obtained by functional screening, based on random over expression of a P. indica cDNA library in Escherichia coli grown on medium supplemented with 0.6 M NaCl. The salinity tolerance conferred by these 36 genes in bacteria was further confirmed by using another strain of E. coli (DH5α) transformants. However when the expression of these 36 genes was analysed in P. indica using quantitative RT-PCR, we found only six genes were up-regulated by salt stress. These six genes are involved in different cellular processes, such as metabolism, energy and biosynthetic processes, DNA repair, regulation of protein turnover, transport and salt stress tolerance. This work presents the basis for further molecular analyses of the mechanisms of salt tolerance in P. indica and for the use of this endophyte to confer salt tolerance to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. doi:10.1038/ncomms1046

    Article  Google Scholar 

  • Breuninger M, Requena N (2004) Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Genet Biol 41:794–804. doi:10.1016/j.fgb.2004.04.002

    Article  CAS  Google Scholar 

  • Bücking H, Heyser W (2003) Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition. Mycorrhiza 13:59–68. doi:10.1007/s00572-002-0196-3

    Article  Google Scholar 

  • Doukhanina EV, Chen S, Van Der Zalm E, Godzik A, Reed J, Dickman MB (2006) Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J Biol Chem 281:18793–18801. doi:10.1074/jbc.M511794200

    Article  CAS  Google Scholar 

  • Forment J, Naranjo MA, Roldan M, Serrano R, Vicente O (2002) Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J 30:511–519

    Article  CAS  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389. doi:10.1146/annurev.arplant.50.1.361

    Article  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429. doi:10.1105/tpc.004861

    Article  CAS  Google Scholar 

  • Hill TW, Käfer E (2001) Improved protocols for aspergillus medium: trace elements and minimum medium salt stock solutions. Fungal Genet Newsl 48:20–21

    Google Scholar 

  • Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8:e26891. doi:10.4161/psb.26891

    Article  Google Scholar 

  • Joseph JD, Heitman J, Means AR (1999) Molecular cloning and characterization of Aspergillus nidulans cyclophilin B. Fungal Genet Biol 27(1):55–66. doi:10.1006/fgbi.1999.1131

    Article  CAS  Google Scholar 

  • Joshi A, Dang HQ, Vaid N, Tuteja N (2009) Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation. Plant Signal Behav 4:400–412. doi:10.4161/psb.4.5.8387

    Article  CAS  Google Scholar 

  • Kanhonou R, Serrano R, Palau RR (2001) A catalytic subunit of the sugar beet protein kinase CK2 is induced by salt stress and increases NaCl tolerance in Saccharomyces cerevisiae. Plant Mol Biol 47:571–579

    Article  CAS  Google Scholar 

  • Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 101:6285–6290. doi:10.1073/pnas.0306074101

    Article  CAS  Google Scholar 

  • Kizawa H, Tomura D, Odat M, Fukamizu A, Hoshino T, Gotohll O, Yasui T, Shoun H (1991) Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from Fusarium oxysporum. J Biol Chem 266:10632–10637

    CAS  Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155:780–790. doi:10.1099/mic.0.019869-0

    Article  CAS  Google Scholar 

  • Li W, Liu X, Qiao H, Sun J, Duan D (2005) Two phase tillage: quick method for crop production in saline soils. Agrifood Res Rep 68:66–72

    Google Scholar 

  • Limpens E, Bisseling T (2003) Signaling in symbiosis. Curr Opin Plant Biol 6:343–350. doi:10.1016/S1369-5266(03)00068-2

    Article  CAS  Google Scholar 

  • Maas E, Bisswanger H (1990) Localization of the alpha-oxoacid dehydrogenase multienzyme complexes within the mitochondrion. FEBS Lett 17:189–190. doi:10.1016/0014-5793(90)80840-F

    Article  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    Article  CAS  Google Scholar 

  • Marx J (2004) The roots of plant-microbe collaborations. Science 304:234–236. doi:10.1126/science.304.5668.234

    Article  Google Scholar 

  • Matouschek A, Rospert S, Schmid K, Glick BS, Schatz G (1995) Cyclophilin catalyzes protein folding in yeast mitochondria. Proc Natl Acad Sci USA 92:6319–6323. doi:10.4161/psb.22734

    Article  CAS  Google Scholar 

  • Mundree SG, Whittaker A, Thomson JA, Farrant JM (2000) An aldose reductase homolog from the resurrection plant Xerophyta viscosa. Planta 211:693–700

    Article  CAS  Google Scholar 

  • Nakashima S, Zhao Y, Nozawa Y (1996) Molecular cloning of delta 9 fatty acid desaturase from the protozoan Tetrahymena thermophila and its mRNA expression during thermal membrane adaptation. J Biochem 317:29–34. doi:10.1016/S1567-1356(02)00088-0

    CAS  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751. doi:10.1111/j.1469-8137.1987.tb00175.x

    Article  Google Scholar 

  • Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJ (2009) Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9:44. doi:10.1186/1471-2148-9-44

    Article  Google Scholar 

  • Nomura M (1999) Regulation of ribosome biosynthesis in Escherichia coli and Saccharomyces cerevisiae: diversity and common principles. J Bacteriol 181:6857–6864

    CAS  Google Scholar 

  • Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 7:414–421. doi:10.1016/j.pbi.2004.05.011

    Article  CAS  Google Scholar 

  • Pascale M, Rosati A, Festa M, Basile A, d’Avenia M, Falco A, Torino G, Turco MC (2010) BAG3 protein: role in some neoplastic cell types and Identification as a candidate target for therapy. Apoptosome. doi:10.1007/978-90-481-3415-1_7

    Google Scholar 

  • Peskan-Berghofer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmuller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122:465–477. doi:10.1111/j.1399-3054.2004.00424.x

    Article  Google Scholar 

  • Pham GH, Kumari R, Singh AN, Sachdev M, Prasad R, Kaldorf M, Buscot F, Oelmüller R, Peskan T, Weiss M, Hampp R, Varma A (2004) Axenic culture of symbiotic fungus Piriformospora indica. Plant Surf Microbiol. doi:10.1007/978-3-540-74051-3_30

    Google Scholar 

  • Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R (2003) The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J 34:257–267

    Article  CAS  Google Scholar 

  • Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878. doi:10.1111/j.1469-8137.2007.02064.x

    Article  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, Reed JC (1995) Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284. doi:10.1016/0092-8674(95)90410-7

    Article  CAS  Google Scholar 

  • Varma A, Savita V, Sudha Sahay N, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744. doi:10.1128/AEM.05225-11

    CAS  Google Scholar 

  • Viaud MC, Balhadere PV, Talbot NJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14:917–930. doi:10.1105/tpc.010389

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391. doi:10.1073/pnas.0504423102

    Article  CAS  Google Scholar 

  • Wang P, Cardenas ME, Cox GM, Perfect JR, Heitman J (2001) Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep 2:511–518. doi:10.1093/embo-reports/kve109

    Article  CAS  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010. doi:10.1111/j.1469-8137.1967.tb05434.x

    Article  Google Scholar 

  • Yadav V, Kumar M, Kumar H, Deep DK, Tripathi T, Sharma R, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from root endophytic fungus Piriformospora indica plays a role in the phosphate transport to the host plant. J Biol Chem 285:26532–26544. doi:10.1074/jbc.M110.111021

    Article  CAS  Google Scholar 

  • Yamada A, Saitoh T, Mimura T, Ozeki Y (2002) Expression of mangrove allene oxide cyclise enhances salt tolerance in Escherichia coli, yeast and tobacco cells. Plant Cell Physiol 4:903–910

    Article  Google Scholar 

  • Yamada A, Tsutsumi K, Tanimoto S, Ozeki Y (2003) Plant RelA/SpoT homolog confers salt tolerance in Escherichia coli and Saccharomyces cerevisiae. Plant Cell Physiol 44:3–9

    Article  CAS  Google Scholar 

  • Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290. doi:10.1371/journal.ppat.1002290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AJ, PS, VD, SS, SR and MK are thankful to the University Grants Commission, Council of Scientific and Industrial Research and Indian Council of Medical Research, Govt. of India, New Delhi, India respectively for providing the fellowships. AKJ and MD are thankful to the Jawaharlal Nehru University, New Delhi, India for providing University potential of excellence (UPOE) fund.

Conflict of interest

We have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atul Kumar Johri or Narendra Tuteja.

Additional information

Sunayna Gahlot and Amita Joshi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahlot, S., Joshi, A., Singh, P. et al. Isolation of genes conferring salt tolerance from Piriformospora indica by random overexpression in Escherichia coli . World J Microbiol Biotechnol 31, 1195–1209 (2015). https://doi.org/10.1007/s11274-015-1867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1867-5

Keywords

Navigation