Skip to main content
Log in

Microbial derived surface active compounds: properties and screening concept

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biosurfactants are surface-active biomolecules that are produced by a variety of microorganisms. They have gained biotechnologist interest for high diversity and their efficient action in comparison to synthetic emulsifiers. So, we discussed a wide array of screening method based on direct and indirect surface and interfacial tension measurements. Also, this review describes biosurfactant physicochemical properties and natural role in the environment. Also, it presents their tolerance to extreme conditions of temperature, pH and ionic strength, low toxicity and biodegradability. Functional properties like emulsification, foaming, solubilizing and membrane permeabilizing activities were also discussed along with their related application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    CAS  Google Scholar 

  • Abdel-Mawgoud AM, Mabrouk Aboulwafa M, Abdel Haleem NH (2008) Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:305–325

    CAS  Google Scholar 

  • Abouseoud M, Maachi R and Amrane A (2007) Biosurfactant production from olive oil by Pseudomonas fluorescens. Commun Curr Res Educ Top Trends Appl Microbiol A. Méndez-Vilas (ed) 340

  • Abouseoud M, Yataghene  A, Amrane A, Maachi R (2010) Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens. J Hazard Mater 180:131–136

  • Agner G, Kaulin YA, Gurnev PA, Szabo Z, Schagina LV, Takemoto JY, Blasko K (2000) Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. Bioelectrochemistry 52:161–167

    CAS  Google Scholar 

  • Ahmed K, Shaik AB, Kumar CG, Mongolla P, Usha Rani P, Rama Krishna KVS, Mamidyala SK, Joseph J (2012) Metabolic profiling and biological activities of bioactive compounds produced by Pseudomonas sp. strain ICTB-745 isolated from Ladakh, India. J Microbiol Biotechnol 22(1):69–79

  • Amézcua-Vega C, Poggi-Varaldo HM, Esparza-García F, Ríos-Leal E, Rodríguez-Vázquez R (2007) Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour Technol 98(1):237–240

    Google Scholar 

  • Andreu A, Stapleton AE, Fennell CL, Hillier SL, Stamm WE (1995) Hemagglutination, adherence, and surface properties of vaginal Lactobacillus species. J Infect Dis 171:1237–1243

    CAS  Google Scholar 

  • Anyanwu CU, Obi SKC, Okolo BN (2011) Lipopeptide biosurfactant production by Serratia marcescens NSK-1 strain isolated from petroleum-contaminated soil. J Appl Sci Res 7(1):79–87

    CAS  Google Scholar 

  • Arutchelvi J, Doble M (2010) Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum contaminated soil. Lett Appl Microbiol 51:75–82

    CAS  Google Scholar 

  • Augustin M, Tene Hippolyte M (2012) Screening of biosurfactants properties of cell-free supernatants of cultures of Lactobacillus spp. isolated from a local fermented milk (Pendidam) of Ngaoundere (Cameroon). Int J Eng Res Appn 2(5):974–985

  • Bafghi MK, Fazaelipoor MH (2012) Application of rhamnolipid in the formulation of a detergent. J Surfactant Deterg. doi:10.1007/s11743-012-1386-4

    Google Scholar 

  • Bai G, Brusseau ML, Miller RM (1997) Biosurfactant-enhanced removal of hydrocarbon from soil. J Contam Hydrol 25:157–170

    CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    CAS  Google Scholar 

  • Benincasa M, Marqués A, Pinazo A, Manresa A (2010) Rhamnolipid surfactants: alternative substrates, new strategies. In: Sen R (ed) Biosurfactants. Landes Bioscience and Springer

  • Bodour AA, Guerrero-Barajas C, Jiorle BV, Malcomson ME, Paull AK, Somogyi A, Trinh LN, Bates RB, Maier RM (2004) Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11. Appl Environ Microbiol 70(1):114–120

    CAS  Google Scholar 

  • Brzozowski B, Bednarski W, Golék P (2011) The adhesive capability of two Lactobacillus strains and physicochemical properties of their synthesized biosurfactants. Food Technol Biotechnol 49(2):177–186

    CAS  Google Scholar 

  • Burch AY, Browne PJ, Dunlap CA, Price NP, Lindow SE (2011) Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production. Environ Microbiol 13(10):2681–2691

    CAS  Google Scholar 

  • Butt HJ, Graf K, Kappl M (2006) Physics and chemistry of interfaces (2, rev. and enl. ed. ed.). Wiley-VCH-Verl, Weinheim, p 16. ISBN 9783527406296

  • Camacho-Chab JC, Guézenne J, Chan-Baca MJ, Ríos-Leal E, Sinquin C, Muñiz-Salazar R, De la Rosa-García S, Del C, Reyes-Estebanez M, Ortega-Morales BO (2013) Emulsifying activity and stability of a non-toxic bioemulsifier synthesized by Microbacterium sp. MC3B-10. Int J Mol Sci 14:18959–18972

    CAS  Google Scholar 

  • Champion JT, Gilkey JC, Lamparsk H, Retterer J, Miller R (1995) Electron microscopy of rhamnolipid (biosurfactant) morphology: effects of ph, cadmium, and octadecane. J Colloid Interface Sci 170:569–574

    CAS  Google Scholar 

  • Chandankere R, Yao J, Cai M, Masakorala K, Jain AK, Choi MMF (2014) Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140–148

    CAS  Google Scholar 

  • Chandran P (2010) Biosurfactant production and diesel degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2(12):6942–6953

    Google Scholar 

  • Chen C, Baker S, Darton R (2007) The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J Microbiol Methods 70:503–510

    CAS  Google Scholar 

  • Chooklin CS, Maneerat S, Saimmai A (2014) Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Appl Biochem Biotechnol. doi:10.1007/s12010-014-0870-x

    Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–999

    CAS  Google Scholar 

  • Chrzanowski Ł, Dziadas M, Ławniczak Ł, Cyplik P, Białas W, Szulc A, Lisiecki P, Jeleń H (2012) Biodegradation of rhamnolipids in liquid cultures: effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition. Bioresour Technol 111:328–335

    CAS  Google Scholar 

  • Čipinyté V, Grigiškis S, Šapokaitė D, Baškys E (2011) Production of biosurfactant by Arthrobacter sp. N3, a hydrocarbon degrading bacterium. In: Proceedings of the 8th international scientific and practical conference, Rēzeknes Augstskola, Rēzekne, RA Izdevniecība, vol 1, pp 68–75

  • Coimbra CD, Rufino RD, Luna JM, Sarubbo LA (2009) Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications. Curr Microbiol 8:245–251

    Google Scholar 

  • Cooper D, Goldenberg B (1987) Surface-active agents from 2 Bacillus species. Appl Environ Microbiol 53(2):224–229

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2005) Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Appl Microbiol Biotechnol 69:192–199

    CAS  Google Scholar 

  • de Souza Sobrinho HB, de Luna JM, Rufino RD, Lúcia A, Porto F, Sarubbo LA (2013) Assessment of toxicity of a biosurfactant from Candida sphaerica UCP 0995 cultivated with industrial residues in a bioreactor. Electron J Biotechnol 16(4):1–12

  • Dehghan-Noudeh G, Housaindokht M, Bazzaz BSF (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43(3):272–276

    Google Scholar 

  • Dilmohamud BA, Seeneevassen J, Rughooputh SDDV, Ramasam P (2005) Surface tension and related thermodynamic parameters of alcohols using the Traube stalagmometer. Euro J Phys 26(6):1079–1084

    CAS  Google Scholar 

  • Edwards KR, Lepo JE, Lewis MA (2003) Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar Pollut Bull 46(10):1309–1316

    CAS  Google Scholar 

  • Flasz A, Rocha CA, Mosquera B, Sajo C (1998) A comparative study of the toxicity of a synthetic surfactant and one produced by Pseudomonas aeruginosa ATCC 55925. Med Sci Res 26(3):181–185

    CAS  Google Scholar 

  • Franzetti A, Bestetti G, Caredda P, La Colla P, Tamburini E (2008) Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol Ecol 63:238–248

    CAS  Google Scholar 

  • Gein SV, Kuyukina MS, Ivshina IB, Baeva TA, Chereshnev VA (2011) In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology 63:559–566

    CAS  Google Scholar 

  • Ghribi D, Abdelkefi-Mesrati L, Boukedi H, Elleuch M, Ellouze-Chaabouni S, Tounsi S (2012) The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J Invert Pathol 109:183–186

    CAS  Google Scholar 

  • Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physico-chemical characterization and antimicrobial properties of the rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81(3):316–322

    CAS  Google Scholar 

  • Hayder NH, Alaa S, Abdulmalik H (2014) Optimized conditions for bioemulsifier production by local Streptomyces sp. SS 20 isolated from hydrocarbon contaminated soil. Rom Biotechnol Lett 19(1):8979–8993

  • Hirata Y, Ryua M, Odaa Y, Igarashia K, Nagatsuka A, Furuta T, Sugiura M (2009) Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J Biosci Bioeng 108(2):142–146

    CAS  Google Scholar 

  • Hoorfar M, Neumann AW (2006) Recent progress in axisymmetric drop shape analysis (ADSA). Adv Colloid Interface Sci 121:25–49

    CAS  Google Scholar 

  • Hua Z, Chen Y, Du C, Chen J (2004) Effects of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds. World J Microbiol Biotechnol 20:25–29

    CAS  Google Scholar 

  • Huszcza E, Burczyk B (2003) Biosurfactant Production by Bacillus coagulans. J Surfactant Deterg 6:61–64

    CAS  Google Scholar 

  • Hwang Y-H, Kim M-S, Song I-B, Park B-K, Lim J-H, Park S-C, Yun H-I (2009) Subacute (28 day) toxicity of surfacin C, a lipopeptide produced by Bacillus subtilis, in rats. J Health Sci 5(3):351–355

    Google Scholar 

  • Ivshina IB, Kuyukina MS, Philp JC, Christofi N (1998) Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J Microbiol Biotechnol 14(5):711–717

    CAS  Google Scholar 

  • Jain D, Collins-Thompson D, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13(4):271–279

    Google Scholar 

  • Janek T, Łukaszewicz M, Rezank T, Krasowska A (2010) Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol 101:6118–6123

    CAS  Google Scholar 

  • Janek T, Łukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24

    CAS  Google Scholar 

  • Johny JM (2013) Screening, gene sequencing and biosurfactant production from Pichia fermentans isolated from dairy effluents. IOSR J Environ Sci Toxicol Food Technol 6(5):2319–2402

    Google Scholar 

  • Joshi S, Bharucha C, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99:4603–4608

    CAS  Google Scholar 

  • Joshi-Navare K, Prabhune A (2013) A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. BioMed Res Int. doi:10.1155/2013/512495

    Google Scholar 

  • Joshi-Navare K, Singh PK, Prabhune AA (2014) New yeast isolate Pichia caribbica synthesizes xylolipid biosurfactant with enhanced functionality. Eur J Lipid Sci Technol. doi:10.1002/ejlt.201300363

    Google Scholar 

  • Kapadia Sanket G, Yagnik BN (2013) Current trend and potential for microbial biosurfactants. Asian J Exp Biol Sci 4(1):1–8

    Google Scholar 

  • Khopade A, Ren B, Liu X-Y, Mahadik K, Zhang L, Kokare C (2012) Production and characterization of biosurfactant from marine Streptomyces species B3. J Colloid Interface Sci 367:311–318

    CAS  Google Scholar 

  • Khoshdast H, Abbasi H, Sam A, Noghabi KA (2012) Frothability and surface behavior of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa MA01. Biochem Eng J 60:127–134

    CAS  Google Scholar 

  • Kim H-S, Jeon J-W, Kim S-B, Oh H-M, Kwon T-J, Yoon B-D (2002) Surface and physic-chemical properties of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica. Biotechnol Lett 24:1637–1641

    CAS  Google Scholar 

  • Kim SK, Cheolkim Y, Lee S, Cheolkim J, Yun M, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 59:934–938

    CAS  Google Scholar 

  • Kiran GS, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 59:432–438

    CAS  Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterisation of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864

    CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philip JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Gein SV, Baeva TA, Chereshnev VA (2007) In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull Exp Biol Med 144(3):326–330

    CAS  Google Scholar 

  • Lima TMS, Procópio LC, Brandão FD, Carvalho AMX, Tótola MR, Borges AC (2011) Biodegradability of bacterial surfactants. Biodegradation 22:585–592

    CAS  Google Scholar 

  • Lindahl M, Faris A, Wadstrom T, Hjertén S (1981) A new test based on salting out to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 677(3–4):471–476

    CAS  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA, Rodrigues LRM, Teixeira JAC, de Campos-Takak GM (2011) Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995. Curr Microbiol 62:1527–1534

    CAS  Google Scholar 

  • Luna JM, Rufino RD, Campos-Takaki GM, Sarubbo LA (2012) Properties of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Chem Eng Trans 27:67–72

  • Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki G-M (2013) Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B 102(1):202–209

    CAS  Google Scholar 

  • Maczek J, Junne S, Götz P (2007) Examining biosurfactant producing bacteria—an example for an automated search for natural compounds. Appl Note CyBio AG

  • Marqués AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manres A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117

    Google Scholar 

  • Mata- Sandoval J, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipids mixture produce by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr 864:211–220

    CAS  Google Scholar 

  • Matsuyama T, Sogawa M, Yano I (1991) Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents. Appl Environ Microbiol 53:1186–1188

    Google Scholar 

  • Medrzycka K, Hallmann E, Pastewski S (2009) Evaluation of surfactant and biosurfactant mixture usefulness in oil removal from soil, based on physicochemical studies and flushing experiments. Environ Prot Eng 35:191–205

    CAS  Google Scholar 

  • Mimee B, Pelletier R (2009) Bélanger RR (2009) In vitro antibacterial activity and antifungal mode of action of flocculosin, a membrane-active cellobiose lipid. J Appl Microbiol 107:989–996

    CAS  Google Scholar 

  • Mnif I, Besbes S, Ellouze-Ghorbel R, Ellouze-Chaabouni S, Ghribi D (2013) Improvement of bread dough quality by Bacillus subtilis SPB1 biosurfactant addition: optimized extraction using response surface methodology. J Sci Food Agric 93:3055–3064

    CAS  Google Scholar 

  • Mohammadipour M, Mousivand M, Jouzani GS, Abbasalizadeh S (2009) Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Canad J Microbiol 55(4):395–404

    CAS  Google Scholar 

  • Mohan PK, Nakhla G, Yanful EK (2006) Biokinetics of biodegradability of surfactants under aerobic, anoxic and anaerobic conditions. Water Res 40:533–540

    CAS  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide Biosurfactants. Biochim Biophys Acta 1488:211–218

    CAS  Google Scholar 

  • Morita T, Kitagawa M, Yamamoto S, Sogabe A, Imura T, Fukuoka T, Kitamoto D (2010) Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair. J Oleo Sci 59(5):267–272

    CAS  Google Scholar 

  • Morita T, Ogura Y, Takashima M, Hirose N, Fukuoka T, Imura T, Kondo Y, Kitamoto D (2011) Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Biosci Bioeng 112(2):137–144

    CAS  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2012) Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T. Appl Microbiol Biotechnol 96:931–938

    CAS  Google Scholar 

  • Mulligan C, Cooper D, Neufeld R (1984) Selection of microbes producing biosurfactants in media without hydrocarbons. J Ferment Technol 62(4):311–314

    CAS  Google Scholar 

  • Munstermann B, Poremba K, Lang S, Wagner F (1992) Studies on environmental compatibility: Influence of (bio)surfactants on marine microbial and enzymatic systems. In: Proceedings of the international symposium on soil decontamination using biological processes, pp 414–420, 6–9 December, Karlsruhe, Germany. Dechema, Frankfurt

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341

    CAS  Google Scholar 

  • Noordmans J, Busscher HJ (1991) The influence of the droplet volume and contact angle on liquid surface tension measurements by axisymmetric drop shape analysis-profile (ADSA-P). Colloids Surf 58:239–249

    CAS  Google Scholar 

  • Nopart P, Maneerat S, Saimmai A (2014) Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3. World J Microbiol Biotechnol 30:865–877

    Google Scholar 

  • Özdemir G, Peker S, Helvaci SS (2004) Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloids Surf A Physicochem Eng Asp 234:135–143

    Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    CAS  Google Scholar 

  • Panchal CJ, Zajic JE (1978) Isolation of emulsifying agents from a species of Corynebacterium. Dev Ind Microbiol 19:569

    Google Scholar 

  • Pastewski S, Klosowska I, Hallmann E, Medrzycka K (2008) Investigations of usefulness of biosurfactants in soil remediation by washing method (Pol). In: Fundamentals of biotechnology—trends, investigations, implementations (Pol), ISBN 978-83-916768-1-3, Gliwice

  • Pathak KV, Keharia H (2014) Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). Biotechnology 4:41–48

    Google Scholar 

  • Pei X, Zhan X, Zhou L (2009) Effect of biosurfactant on the sorption of phenanthrene onto original and H2O2-treated soils. J Environ Sci 1(10):1378–1385

    Google Scholar 

  • Pereira JFB, Gudiña EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JAP, Rodrigues LR (2013) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111:259–268

    CAS  Google Scholar 

  • Persson A, Molin G (1987) Capacity for biosurfactant production of environmental Pseudomonas and Vibrionaceae growing on carbohydrates. Appl Microbiol Biotechnol 26(5):439–442

    CAS  Google Scholar 

  • Plaza GA, Zjawiony I, Banat IM (2006) Use of different methods for detection of thermophilic biosurfactant producing bacteria from hydrocarbon-contaminated and bioremediated soils. J Petrol Sci Eng 50:71–77

    CAS  Google Scholar 

  • Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99:1589–1595

    CAS  Google Scholar 

  • Pruthi V, Cameotra S (1997) Rapid identification of biosurfact ant-producing bacterial strains using a cell surface hydrophobicity technique. Biotechnol Techniques 11(9):671–674

    CAS  Google Scholar 

  • Qazi MA, Subhan M, Fatima N, Ali MI, Ahmed S (2013) Role of biosurfactant produced by Fusarium sp. BS-8 in enhanced oil recovery (EOR) through sand pack column. Int J Biosci Biochem Bioinf 3(6):598–604

  • Qiao N, Shao Z (2010) Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J Appl Microbiol 108:1207–1216

    CAS  Google Scholar 

  • Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P, Thonart P (1996) Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. JAOCS 73 (1)

  • Rodrigues RL, Teixeira AJ, van der Mei CH, Oliveira R (2006) Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B 49:79–86

    CAS  Google Scholar 

  • Rosen M (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Rosenberg M (1981) Bacterial adherence to polystyrene—a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 42(2):375–377

    CAS  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    CAS  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    CAS  Google Scholar 

  • Rufino RD, de Luna JM, de Campos Takaki GM, Sarubbo LA (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol. doi:10.1016/j.ejbt.2013.12.006

    Google Scholar 

  • Saeki H, Sasaki M, Komatsu K, Miura Matsuda H (2009) Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour Technol 00:572–577

    CAS  Google Scholar 

  • Safary A, Roayayi Ardakani M, Abolhasani Suraki A, Akbarzade Khiavi M, Motamedi H (2010) Isolation and characterization of biosurfactant producing bacteria from Caspian Sea. Biotechnology 9:378–382

    Google Scholar 

  • Sahnoun R, Mnif I, Fetoui H, Gdoura R, Chaabouni K, Makni-Ayadi F, Kallel C, Ellouze-Chaabouni S, Ghribi D (2014) Evaluation of Bacillus subtilis SPB1 lipopeptide biosurfactant toxicity towards mice. Int J Pept Res Ther. doi:10.1007/s10989-014-9400-5

    Google Scholar 

  • Saimmai A, Rukadee O, Onlamool T, Sobhon V, Maneerat S (2012a) Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18. World J Microbiol Biotechnol 8:2973–2986

    Google Scholar 

  • Saimmai A, Sobhon V, Maneerat S (2012b) Production of biosurfactant from a new and promising strain of Leucobacter komagatae 183. Ann Microbiol 62:391–402

    CAS  Google Scholar 

  • Saimmai A, Udomsilp S, Maneerat S (2013) Production and characterization of biosurfactant from marine bacterium Inquilinus limosus KB3 grown on low-cost raw materials. Ann Microbiol. doi:10.1007/s13213-012-0592-7

    Google Scholar 

  • Salihu A, Abdulkadir I, Almustapha MN (2009) An investigation for potential development on Biosurfactants. Biotechnol Mol Biol Rev 5:111–117

    Google Scholar 

  • Saravanan V, Vijayakumar S (2012) Isolation and screening of biosurfactant producing microorganisms from oil contaminated soil. J Acad Indus Res 1(5):264–268

  • Satpute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA (2008) Assessment of different screening methods for selecting biosurfactant producing bacteria. Indian J Mar Sci 243–250

  • Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 1–18

  • Scheibenbogen K, Zytner RG, Lee H, Trevors JT (1994) Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. J Chem Tech Biotechnol 59:53–59

    CAS  Google Scholar 

  • Sharma D, Mandal SM, Manhas RK (2014) Purification and characterization of a novel lipopeptide from Streptomyces amritsarensis sp. nov. active against methicillin-resistant Staphylococcus aureus. AMB Express 4:50

  • Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A (2011) Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Colloids Surf B 82:477–482

    CAS  Google Scholar 

  • Shoeb E, Akhlaq F, Badar U, Akhter J, Imtiaz S (2013) Classification and industrial applications of biosurfactants. Part-I. Nat Appl Sci 4(3):243–252

  • Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5(4):265–268

    CAS  Google Scholar 

  • Singer ME, Finnerty WR, Bolden P, King AD (1993) Characterization of a biosurfactant effective in heavy oil viscosity reduction, in Svmp. Eiol. Pressures Related to Petrol Rec Am Chem SOC Div Petrol Chem, Seattle, Wash, 785

  • Smyth CJ, Jonsson P, Olsson E, Soderlind O, Rosengren J, Hjerten S, Wadstrom T (1978) Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli. Infect Immun 22:462–472

    CAS  Google Scholar 

  • Stoimenova E, Vasileva-Tonkova E, Sotirova A, Galabova D, Lalchev Z (2009) Evaluation of different carbon sources for growth and biosurfactant production by Pseudomonas fluorescens isolated from wastewaters. Z Naturforsch 64:96–102

    CAS  Google Scholar 

  • Tadros T (2005) Adsorption of surfactants at the air/liquid and liquid/liquid interfaces. In: Applied surfactants: principles and applications. Wiley VCH, Weinheim, pp 81–82

  • Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66(2):525–533

    CAS  Google Scholar 

  • Thanomsub B, Watcharachaipong T, Chotelersak K, Arunrattiyakorn P, Nitoda T, Kanzaki H (2004) Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. J Appl Microbiol 96:588–592

    CAS  Google Scholar 

  • Thavasi R, Sharma S, Jayalakshmi S (2011) Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Petrol Environ Biotechnol. doi:10.4172/2157-7463.S1-001

    Google Scholar 

  • Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J Oleo Sci 58:97–102

    CAS  Google Scholar 

  • Tomar S, Singh BP, Khan MA, Kumar S, Sharma S, La M (2013) Identification of Pseudomonas aeruginosa strain producing biosurfactant with antifungal activity against Phytopthora infestans. Potato J 40(2):155–163

    Google Scholar 

  • Tuleva BK, Ivanov GR, Christova NE (2002) Biosurfactant production by a new Pseudomonas putida strain. Z Naturforsch 57:356–360

    CAS  Google Scholar 

  • Tuleva B, Christova N, Jordanov B, Nikolova-Damyanova B, Petrov P (2005) Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN. Z Naturforsch 60:577–582

    CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710

    CAS  Google Scholar 

  • Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Péchy-Tarr M, Cosson P, Keel C, Caroff M, Lemaitre B (2010) Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl Environ Microbiol 76:3910–3921

    Google Scholar 

  • van der Vegt W, van der Mei HC, Noordmans J, Busscher HJ (1991) Assessment of bacterial biosurfactant production through axisymmetrical drop shape-analysis by profile. Appl Microbiol Biotechnol 5(6):766–770

    Google Scholar 

  • van Hoogmoed CG, van der Kuijl-Booij M, van der Mei HC, Busscher HJ (2000) Inhibition of Streptococcus mutans NS adhesion to glass with and without a salivary conditioning film by biosurfactant- releasing Streptococcus mitis strains. Appl Environ Microbiol 66(2):2659–2663

    Google Scholar 

  • Varadavenkatesan T, Murty VR (2013) Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol ID 621519, 8

  • Varjani SJ, Rana DP, Bateja S, Sharma MC, Upasani VN (2014) Screening and identification of biosurfactant (bioemulsifier) producing bacteria from crude oil contaminated sites of Gujarat, India. Int J Inno Res Sci Eng Technol 3 (2)

  • Vaux D, Cottingham M (2001) Method and apparatus for measuring surface configuration. Patent Number WO 2007/039729 A1

  • Vaz DA, Gudina EJ, Alameda EJ, Teixeira JA, Rodrigues LR (2012) Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids Surf B Biointerfaces 89:167–174

    CAS  Google Scholar 

  • Vedaraman N, Venkatesh NM (2010) The effect of medium composition on the production of sophorolipids and the tensiometric properties by Starmerella bombicola MTCC 1910. Polish J Chem Technol 12(2):9–13

    Google Scholar 

  • Vollbrecht E, Rau U, Lang S (1999) Microbial conversion of vegetable oils into surface active di, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Fett/Lipid 101:389–394

    CAS  Google Scholar 

  • Walencka E, Wieckowska-Szakiel M, Rozalska S, Sadowska B, Rozalsk B (2007) A surface-active agent from Saccharomyces cerevisiae influences staphylococcal adhesion and biofilm development. Verlag der Zeitschrift für Naturforschung Tübingen 62:433–438

    CAS  Google Scholar 

  • Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. Adv Exp Med Biol 672:1–13

    CAS  Google Scholar 

  • Whang L-M, Liuc P-WG, Ma C-C, Cheng S-S (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    CAS  Google Scholar 

  • White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115(3):744–755

    CAS  Google Scholar 

  • Willumsen P, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7(5):415–423

    Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    CAS  Google Scholar 

  • Yakimov MM, Fredrickson HL, Timmis KN (1996) Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol Appl Biochem 23(1):13–18

    CAS  Google Scholar 

  • Zajic JE, Seffens W, Panchal C (1983) Biosurfactants. Crit Rev Biotechnol 1(2):87–107

  • Zhao WQ, Wang K, Brian K, Liu C, Gu Y (2010) Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour Technol 101:292–297

    CAS  Google Scholar 

  • Zou C, Wang M, Xing Y, Lan G, Ge T, Yan X, Gu T (2014) Characterization and optimization of biosurfactants produced by Acinetobacter baylyi ZJ2 isolated from crude oil-contaminated soil sample toward microbial enhanced oil recovery applications. Biochem Eng J 90:49–58

    CAS  Google Scholar 

Download references

Conflict of interest

The authors report no declaration of interest.

Ethical standard

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inès Mnif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnif, I., Ghribi, D. Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol 31, 1001–1020 (2015). https://doi.org/10.1007/s11274-015-1866-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1866-6

Keywords

Navigation