Skip to main content

Advertisement

Log in

High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

High molecular weight bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers, produced by a wide variety of microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively and/or emulsify hydrophobic compounds. Emulsan, fatty acids, phospholipids, neutral lipids, exopolysaccharides, vesicles and fimbriae are among the most popular high molecular weight bioemulsifiers. They have great physic-chemical properties like tolerance to extreme conditions of pH, temperature and salinity, low toxicity and biodegradability. Owing their emulsion forming and breaking capacities, solubilization, mobilization and dispersion activities and their viscosity reduction activity; they possess great environmental application as enhancer of hydrocarbon biodegradation and for microbial enhanced oil recovery. Besides, they are applied in biomedical fields for their antimicrobial and anti-adhesive activities and involvement in immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albuquerque CDC, Filetti AMF, Campos-Takaki GM (2006) Optimizing the medium components in bioemulsifiers production by Candida lipolytica with response surface method. Canad J Microbiol 52:575–583

    CAS  Google Scholar 

  • Amézcua-Vega C, Poggi-Varaldo HM, Esparza-García F, Ríos-Leal E, Rodríguez-Vázquez R (2007) Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour Technol 98(1):237–240

    Google Scholar 

  • Amodu OS, Ojumu TV, Obed Ntwampe SK (2013) Bioavailability of high molecular weight polycyclic aromatic hydrocarbons using renewable resources. Environmental biotechnology—new approaches and prospective applications, Chapter 8 http://dx.doi.org/10.5772/54727

  • Arli SD, Trivedi UB, Patel KC (2011) Curdlan-like exopolysaccharide production by Cellulomonas flavigena UNP3 during growth on hydrocarbon substrates. World J Microbiol Biotechnol 27:1415–1422

    CAS  Google Scholar 

  • Asai Y, Ohyama Y, Gen K, Ogawa T (2001) Bacterial fimbriae and their peptides activate human gingival epithelial cells through toll-like receptor 2. Infect Immun 69(12):7387–7395

    CAS  Google Scholar 

  • Ashtaputre AA, Shah AK (1995) Emulsifying property of a viscous exopolysaccharicle from Sphingomonas paucimobilis. World J Microbiol Biotecbnol 11:219–222

    CAS  Google Scholar 

  • Augustin M, Tene Hippolyte M (2012) Screening of biosurfactants properties of cell-free supernatants of cultures of Lactobacillus spp. isolated from a local fermented milk (Pendidam) of Ngaoundere (Cameroon). Int J Eng Res Appn 2(5):974–985

    Google Scholar 

  • Avila-Calderon ED, Lopez-Merino A, Jain N, Peralta H, Lopez-Villegas EO, Sriranganathan N, Boyle SM, Witonsky S, Contreras-Rodriguez A (2011) Characterization of outer membrane vesicles from Brucella melitensis and protection induced in mice. Clin Develop Immunol. doi:10.1155/2012/352493

    Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702

    CAS  Google Scholar 

  • Bashetti SP, Palande PP, Mankar SG, Bhuyan SS, Chopade BA, Mujumdar SS (2012) Studies of bioemulsifier production by Acinetobacter Caalcoaceticus C42 islated from rhizosphere of corn. Int J Inst Pharm Life Sci 2(3):2249–6807

  • Batrakov SG, Konova IV, Sheichenko VI, Esipov SE, Galanina LA (2001) Two unusual glycerophospholipids from a filamentous fungus, Absidia corymbifera. Biochim Biophys Acta 1531:169–177

    CAS  Google Scholar 

  • Beeba JL, Umbreit WW (1971) Extracellular lipid of Thiobacillus thiooxidans. J Bacteriol 108:612–615

    Google Scholar 

  • BonillaM Olivaro C, Corona M, Vazquez A, Soubes M (2005) Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol 98(2):456–463

    Google Scholar 

  • Boyle CD, Reade AE (1983) Characterization of two extracellular polysaccharides from marine bacteria. Appl Environ Microbiol 46:392–399

    CAS  Google Scholar 

  • Bryant R (1987) Potential use of microorganisms in petroleum recovery technology. Proc Okla Acad Sci 67:97–104

    Google Scholar 

  • Burd G, Ward OP (1996) Involvement of a surface-active high molecular weight factor in degradation of polycyclic aromatic hydrocarbons by Pseudomonas marginalis. Can J Microbiol 42:791–797

    CAS  Google Scholar 

  • Burgos-Díaz C, Pons R, Espuny MJ, Aranda FJ, Teruel JA, Manresa A, Ortiz A, Marqués AM (2011) Isolation and partial characterization of a biosurfactant mixture produced by Sphingobacterium sp. isolated from soil. J Colloid Interf Sci 361:195–204

    Google Scholar 

  • Calvo C, Ferrer MR, Martinez-Checa F, Be Jar B, Quesada E (1995) Some rheological properties of the extracellular polysaccharide produced by Volcaniella eurihalina F2-7. Appl Biochem Biotechnol 55:45–54

    CAS  Google Scholar 

  • Calvo C, Martinez-Checa F, Mota A, Bejar V, Quesada E (1998) Effect of cations, pH and sulfate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. J Ind Microbiol Biotechnol 20:205–209

    CAS  Google Scholar 

  • Camacho-Chab JC, Guézenne J, Chan-Baca MJ, Ríos-Leal E, Sinquin C, Muñiz-Salazar R, De la Rosa-García S, Del C, Reyes-Estebanez M, Ortega-Morales BO (2013) Emulsifying activity and stability of a non-toxic bioemulsifier synthesized by Microbacterium sp. MC3B-10. Int J Mol Sci 14:18959–18972

    CAS  Google Scholar 

  • Cameron DR, Cooper DG, Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54(6):1420–1425

    CAS  Google Scholar 

  • Cappello S, Crisari A, Denaro R, Crescenzi F, Porcelli F, Yakimov MM (2011) Biodegradation of a bioemulsificant exopolysaccharide (EPS2003) by marine bacteria. Wat Air Soil Poll 214:645–652

    CAS  Google Scholar 

  • Castro GR, Panilaitis B, Kaplan DL (2008) Emulsan, a tailorable biopolymer for controlled release. Bioresour Technol 99:4566–4571

    CAS  Google Scholar 

  • Cao X-H, Liao Z-Y, Wang C-L, Yang W-Y, Lu M-F (2009) Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Braz J Microbiol 40:373–379

  • Chamanrokh P, Mazaheri Assadi M, Amoabediny Gh, Rashedi H (2010) Cleaning oil-contaminates vessel by emulsan producers (authochthonous bacteria). Iran J Environ Health Sci Eng 7(3):209–222

    CAS  Google Scholar 

  • Choma A, Komaniecka I (2002) Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. Syst Appl Microbiol 25:326–331

    CAS  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850

    CAS  Google Scholar 

  • Das M (2001) Characterization of de-emulsification capabilities of a Micrococcus species. Bioressour Technol 79:15–22

    CAS  Google Scholar 

  • Dastgheib SMM, Amoozegar A, Elahi E, Asad Sand Banat M (2008) Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery. Biotechnol Lett 30:263–270

    CAS  Google Scholar 

  • de Souza Sobrinho HB, de Luna JM, Rufino RD, Lúcia A, Porto F, Sarubbo LA (2013) Assessment of toxicity of a biosurfactant from Candida sphaerica UCP 0995 cultivated with industrial residues in a bioreactor. Elect J Biotechnol. doi:10.2225/vol16-issue4-fulltext-4

    Google Scholar 

  • Dehghan-Noudeh G, Moshafi MH, Sharififar F, Masoumi MA (2007) Studies of biosurfactant production by Acinetobacter calcoaceticus (PTCC 1318). Jundish J Nat Pharm Prod 2(2):116–123

    Google Scholar 

  • Demuth DR, James D, Kowashi Y, Kato S (2003) Interaction of Actinobacillus actinomycetemcomitans outer membrane vesicles with HL60 cells does not require leukotoxin. Cell Microbiol 5(2):111–121

    CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Am Soc Microbiol 61:47–64

    CAS  Google Scholar 

  • Deshmukh C, Jagtap CB, Titus S, Kumar P (2012) Isolation and characterization of fatty acid esters and hosphatidylethanolamine surfactants from a consortium of marine bacteria. Ind J Geo-Mar Sci 41(5):398–404

    CAS  Google Scholar 

  • Dikit P, Maneerat S, Musikasang H, H-kittikun A (2010) Emulsifier properties of the mannoprotein extract from yeast isolated from sugar palm wine. Sci Asia 36:312–318

    CAS  Google Scholar 

  • Donio MBS, Ronica FA, Viji VT, Velmurugan S, Adlin Jenifer JSC, Michaelbabu M, Dhar P, Citarasu T (2013) Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. Springer Plus 2:149

    Google Scholar 

  • Doshi DV, Maniyar JP, Bhuyan SS, Mujumdar SS (2010) Studies on bioemulsifier production Actinopolyspora sp. A18 isolated from garden soil. Ind J Biotechnol 9:391–396

    CAS  Google Scholar 

  • Duvnjak Z, Kosaric N (1985) Production and release of surfactant by Corynebacterium lepus in hydrocarbon and glucose media. Biotechnol Lett 7:793–796

    CAS  Google Scholar 

  • Duvnjak Z, Cooper DG, Kosaric N (1982) Production of surfactant by Arthrobacter paraffineus ATCC19558. Biotechnol Bioeng 24:165–175

    CAS  Google Scholar 

  • Edwards SG, Seddon B (2001) Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J Appl Microbiol 91(4):652–659

    CAS  Google Scholar 

  • Edwards KR, Lepo JE, Lewis MA (2003) Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar Pollut Bull 46(10):1309–1316

    CAS  Google Scholar 

  • Elkeles A, Rosenberg E, Ron EZ (1994) Production and secretion of the polysaccharide biodispersan of Acinetobacter calcoaceticus A2 in protein secretion mutants. Appl Environ Microbiol 60:4642–4645

    CAS  Google Scholar 

  • Fattom A, Shilo M (1985) Production of emulcyan by Phormidium J-1: its activity and function. FEMS Microbiol Lett 31(1):3–9

    CAS  Google Scholar 

  • Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications—present status and future potentials, biomedical science, engineering and technology, Prof. Dhanjoo N. Ghista (Ed.), ISBN: 978-953-307-471-9

  • Franzetti A, Gandolfi I, Raimondi C, Bestetti G, Banat IM, Smyth TJ, Papacchini M, Cavallo Fracchia ML (2012) Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresour Technol 108:245–251

    CAS  Google Scholar 

  • Garduno RA, Phipps BM, Kay WW (1995) Physical and functional s-layer reconstitution in Aeromonas salmonicida. J Bacteriol 177:2684–2694

    CAS  Google Scholar 

  • Geske T, Vom Dorp K, Dörmann P, Hölzl G (2013) Accumulation of glycolipids and other non-phosphorous lipids in Agrobacterium tumefaciens grown under phosphate deprivation. Glycobiol 23:69–80

    CAS  Google Scholar 

  • Gudina EJ, Rocha V, Teixeira JA, Rodrigues LR (2010) Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett Appl Microbiol 50:419–424

    CAS  Google Scholar 

  • Guezennec JG, Pignet P, Raguenes G, Deslandes E, Lijour Y, Gentric E (1994) Preliminary chemical characterization of unusual eubacterial exopolysaccharides of deep-sea origin. Carbohydr Polym 24:287–294

    CAS  Google Scholar 

  • Gutiérrez T, Mulloy B, Black K, Green DH (2007) Glycoprotein emulsifiers from two marine Halomonas species: chemical and physical characterization. J Appl Microbiol 103:1716–1727

    Google Scholar 

  • Haggar A, Hussain M, Lönnies H, Herrmann M, Norrby-Teglund A, Flock JI (2003) Extracellular adherence protein from Staphylococcus aureus enhances internalization into eukaryotic cells. Infect Immun 71(5):2310–2317

    CAS  Google Scholar 

  • Hanson KG, Kale VC, Desai AJ (1994) The possible involvement of cell surface and outer membrane proteins of Acinetobacter sp.A3 in crude oil degradation. FEMS Microbiol Lett 122:275–280

    CAS  Google Scholar 

  • Heinemann C, van Hylckama Vlieg JET, Janssen DB, Busscher HJ, van der Mei HC, Reid G (2000) Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiol Lett 190(1):177–180

    CAS  Google Scholar 

  • Hisatsuka K, Nakahara T, Yamada K (1972) Protein-like activator for n-alkane oxidation by Pseudomonas aeruginosa S7B1. Agric Biol Chem 36:1361–1369

    CAS  Google Scholar 

  • Hisatsuka K, Nakahara T, Minoda Y, Yamada K (1977) Formation of protein-like activator for n-alkane oxidation and its properties. Agric Biol Chem 41:445–450

    CAS  Google Scholar 

  • Hou N, Li D, Ma F, Zhang J, Xu Y, Wang J, Li C (2013) Effective biodemulsifier components secreted by Bacillus mojavensis XH-1 and analysis of the demulsification process. Biodegr. doi:10.1007/s10532-013-9679-5

    Google Scholar 

  • Ismaeel M Ch, Ibrahim KM, Al-Malikey M Kh (2013) The effect of surlactin produced by Lactobacillus acidophilus on eye infectious bacteria in rabbits. J Baghdad Sci 10(1):133–143

  • Jagtap S, Yavankar S, Pardesi K, Chopade B (2010) Production of bioemulsifier by Acinetobacter species isolated from healthy human skin. Ind J Exp Biol 48:70–76

    CAS  Google Scholar 

  • Jain RM, Mody K, Mishra A, Jha B (2012) Physicochemical characterization of biosurfactant and its potential to remove oil from soil and cotton cloth. Carbohydr Polym 89:1110–1116

    CAS  Google Scholar 

  • Janek T, Łukaszewicz M, Krasowska A (2013) Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf B Biointerf. doi:10.1016/j.colsurfb.2013.05.008

    Google Scholar 

  • Janiyani KL, Purohit HJ, Shanker R, Khanna P (1994) Deemulsification of oil-in-water emulsions by Bacillus subtilis. World J Microbiol Biotechnol 10:445–452

    Google Scholar 

  • Johnson V, Singh M, Saini VS, Adhikari DK, Sista V, Yadav NK (1992) Bioemulsifier production by an oleaginous yeast Rhodotorulaglutinis IIP-30. Biotechnol Lett 14(6):487–490

    CAS  Google Scholar 

  • Joshi-Navare K, Khanvilkar P, Prabhune A (2013) Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive. Biochem Res Int. doi:10.1155/2013/169797

    Google Scholar 

  • Kaeppeli O, Finnery WR (1979) Partition of alkane by an extracellular vesicle derived from haexdecane-grown Acinetobacter. J Bacteriol 140(2):707–712

    Google Scholar 

  • Katemai W, Maneerat S, Kawai F, Kanzaki H, Nitoda T, H-Kittikun A (2008) Purification and characterization of a biosurfactant produced by Issatchenkia orientalis SR4. J Gen Appl Microbiol 54:79–82

    CAS  Google Scholar 

  • Kawahara H, Hirai A, Minabe T, Obata H (2013) Stabilization of astaxanthin by a novel biosurfactant produced by Rhodotorula mucilaginosa KUGPP-1. Biocontrol Sci 18(1):21–28

    CAS  Google Scholar 

  • Kawai Y, Nakagawa Y, Matuyama T, Akagawa K, Itagawa K, Fukase K, Kusumoto S, Nishijima M, Yano I (1999) A typical bacterial ornithine-containing lipid Nα-(D)-3-(hexadecanoy-loxy)hexadecanoyl]-ornithine is a strong stimulant for macrophages and a useful adjuvant. FEMS Immunol Med Microbiol 23:67–73

    CAS  Google Scholar 

  • Kawai Y, Watanabe M, Matsuura M, Nishijima M, Kawahara K (2002) The partially degraded lipopolysaccharide of Burkholderia cepacia and ornithine-containing lipids derived from some gram-negative bacteria are useful complex lipid adjuvants. EMS Immunol Medical Microbiol 34:173–179

    CAS  Google Scholar 

  • Khandelwal P, Banerjee-Bhatnagar N (2003) Insecticidal activity associated with the outer membrane vesicles of Xenorhabdus nematophilus. Appl Environ Microbiol 169(4):2032–2037

    Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipids biosurfactants–from energy–saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    CAS  Google Scholar 

  • Kokare CR, Kadam SS, Mahadik KR, Chopade BA (2007) Studies on bioemulsifier production from marine Streptomyces sp. S1. Ind. J Biotechnol 6:78–84

    CAS  Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterisation of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864

    CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70

    CAS  Google Scholar 

  • Leahy JG, Khalid ZM, Quintero EJ, Jones-Meehan JM, Heidelberg JF, Batchelor PJ, Colwell RR (2003) The concentrations of hexadecane and inorganic nutrients modulate the production of extracellular membrane-bound vesicles, soluble protein, and bioemulsifier by Acinetobacter venetianus RAG1 and Acinetobacter sp. strain HO1-N. Canad J Microbiol 49(9):569–575

    CAS  Google Scholar 

  • Lee JC, Lee KY (2000) Emulsification using environmental compatible emulsifiers and de-emulsification using DC field and immobilized Nocardia amarae. Biotechnol Lett 22:1157–1163

    CAS  Google Scholar 

  • Liang T-W, Wu C-C, Cheng W-T, Chen Y-C, Wang C-L, Wang I-L, Wang S-L (2014) Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl Biochem Biotechnol 172:933–950

    CAS  Google Scholar 

  • Liu J, Peng J, Huang X, Lu L, Cheng H, Yang D, Zhou Q, Deng H (2011) Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. S-XJ-1. J Environ Sci 23(6):1020–1026

    CAS  Google Scholar 

  • Lukondeh T, Ashbolt NJ, Rogers PL (2003) Evaluation of Kluyveromyces marxianus FII 510700 grown on a lactose-based medium as a source of a natural bioemulsifier. J Ind Microbiol Biotechnol 30:715–720

    CAS  Google Scholar 

  • Ly MH, Naïtali-Bouchez M, Meylheuc T, Bellon-Fontaine M-N, Le Mai T, Belin J-M, Waché Y (2006) Importance of bacterial surface properties to control the stability of emulsions. Int J Food Microbiol 112:26–34

    CAS  Google Scholar 

  • Macdonald CR, Cooper DG, Zajic JE (1981) Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl Environ Microbiol 41(1):117–123

    CAS  Google Scholar 

  • Maki JS, Ding L, Stokes J, Kavouras JH, Rittschof D (2000) Substratum/bacterial interactions and larval attachment: films and exopolysaccharides of Halomonasmarina (ATCC 25374) and their effect on barnacle cyprid larvae, Balanus amphitrite Darwin. Biofouling 16:159–170

    CAS  Google Scholar 

  • Maneerat S, Bamba T, Harada K, Kobayashi A, Yamada H, Kawai F (2006) A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium Myroides sp. Strain SM1. Appl Microbiol Biotechnol 70:254–259

    CAS  Google Scholar 

  • Maniyar JP, Doshi DV, Bhuyan SS, Mujumdar SS (2011) Bioemulsifier production by Streptomyces sp. S22 isolated from garden soil. Ind J Exp Biol 49:293–297

    Google Scholar 

  • Marrakchi H, Lanéelle M-A, Daffé M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21(1):67–85

    CAS  Google Scholar 

  • Martinez-Checa F, Toledo FL, El Mabrouki K, Quesada E, Calvo C (2007) Characteristics of bioemulsifier V2-7 synthesized in culture media added of hydrocarbons: chemical composition, emulsifying activity and rheological properties. Bioresour Technol 98:3130–3135

    CAS  Google Scholar 

  • Mohebali G, Kaytash A, Etemadi N (2012) Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1. Colloids Surf B Biointerf 98:120–128

    CAS  Google Scholar 

  • Mousavian SS, Rahimi KY (2010) Eumsan production by Acinetobacter calcoaceticus RAG-1 ATCC-31012. Iran J Food Sci Technol 7(3):117–125

    Google Scholar 

  • Munstermann B, Poremba K, Lang S, Wagner F (1992) Studies on environmental compatibility: influence of (bio) surfactants on marine microbial and enzymatic systems. In Proceedings of the international symposium on soil decontamination using biological processes p. 414–420, 6–9, Karlsruhe, Germany. Frankfurt: Dechema

  • Nadarajah N, Singh A, Owen P (2002) Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions. World J Microbiol Biotechnol 18:435–440

    CAS  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlibe A, Leggman R, Carmeli S, Ron EZ, Rosenberg E (1995) Alsan, a new bioemulsifier from Acinetobacter redioresistens. Appl Environ Microbiol 61:3240–3244

    CAS  Google Scholar 

  • Navon-Venezia S, Banin E, Ron EZ, Rosenberg E (1998) The bioemulsifier alasan: role of protein in maintaining structure and activity. Appl Microbiol Biotechnol 49:382–384

    CAS  Google Scholar 

  • Oloke JK, Glick BR (2005) Production of bioemulsifier by an unusual isolate of salmon/red melanin containing Rhodotorula glutinis. Afr J Biotechnol 4(2):164–171

    CAS  Google Scholar 

  • Orsod M, Joseph M, Huyop F (2012) Characterization of exopolysaccharides produced by Bacillus cereus and Brachybacterium sp. Isolated from Asian Sea Bass (Lates calcarifer). Malays. J Microbiol 8(3):170–174

    CAS  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    CAS  Google Scholar 

  • Panilaitis B, Johri A, Blank W, Kaplan DL, Fuhrman J (2002) Adjuvant activity of emulsan, a secreted lipopolysaccharide from Acinetobacter calcoaceticus. Clin Diagn Lab Immunol 9:1240–1247

    CAS  Google Scholar 

  • Panilaitis B, Castro GR, Solaiman D, Kaplan DL (2007) Biosynthesis of emulsan biopolymers from agro-based feedstocks. J Appl Microbiol 102:531–537

    CAS  Google Scholar 

  • Paraszkiewicz K, Kanwal A, Długonski J (2002) Emulsifier production by steroid transforming filamentous fungus Curularia lunata. Growth and product characterization. J Biotechnol 92:287–294

    CAS  Google Scholar 

  • Park SH, Lee J-H, Ko S-H, Lee D-S, Lee HK (2000) Demulsifcation of oil-in-water emulsions by aerial spores of a Streptomyces sp. Biotechnol Lett 22:1389–1395

    CAS  Google Scholar 

  • Patil JR, Chopade BA (2001) Studies on bioemulsifier production by Acinetobacter strains isolated from healthy human skin. J Appl Microbiol 91:290–298

    CAS  Google Scholar 

  • Patrick S, McKenna JP, O’Hagan S, Dermott E (1996) A comparison of the haemagglutinating and enzymic activities of Bacteroides fragilis whole cells and outer membrane vesicles. Microb Pathog 20:191–202

    CAS  Google Scholar 

  • Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102(6):1603–1611

    CAS  Google Scholar 

  • Perfumo A, Smyth TJP, Marchant R, Banat IM (2009) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates: microbiology of hydrocarbons, oils, lipids, and derived compounds. In: Timmis KN (ed). Springer, UK (in press)

  • Perfumo AS, Smyth TJP, Marchant R, Banat I (2010) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates: In handbook of hydrocarbon and lipid microbiology. In: Timmis K.N (ed). Chap. 47. 2(7):1501–1512

  • Petrovski S, Dyson ZA, Quill ES, McIlroy SJ, Tillett D, Seviour RJ (2011) An examination of the mechanisms for stable foam formation in activated sludge systems. Water Res 45:2146–2154

    CAS  Google Scholar 

  • Pines O, Gutnick D (1986) Role for emulsan in growth of Acinetobacter calcoaceticus RAG-1 on crude oil. Appl Environ Microbiol 51(3):661–663

    CAS  Google Scholar 

  • Planckaert M (2005) Oil reservoirs and oil production. Petroleum microbiology. ASM Press, Washington

    Google Scholar 

  • Post FJ, Collins NF (1982) A preliminary investigation of the membrane lipid of Halobacterium halobium as a food additive. J Food Biochem 6(1):25–38

    CAS  Google Scholar 

  • Prapulla SG, Jacob Z, Nagin C, Rajalakshmi R, Karanth NG (1992) Maximization of lipid production by Rhodotorula gracilis CFR-1 using response surface methodology. Biotechnol Bioeng 40:965–970

    CAS  Google Scholar 

  • Rahman KSM, Gakpe E (2008) Productioncharacterization and applications of biosurfactants-review. Biotechnol 7(2):360–370

    CAS  Google Scholar 

  • Rhee CH, Park HD (2001) Three glycoproteins with antimutagenic activity Identified in Lactobacillus plantarum KLAB21. Appl Environ Microbiol 67(8):3445–3449

    CAS  Google Scholar 

  • Rodrigues RL, Teixeira AJ, van der Mei CH, Oliveira R (2006) Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B Biointerf 49:79–86

    CAS  Google Scholar 

  • Ron E, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    CAS  Google Scholar 

  • Rosenberg M, Bayer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44(4):929–937

    CAS  Google Scholar 

  • Rosenberg E, Schwartz Z, Tenenbaum A, Rubinovitz C, Legmann R, Ron EZ (1989) Microbial polymer that changes the surface properties of limestone: effect of biodispersan in grinding limestone and making paper. J Dispers Sci Technol 10:241–250

    CAS  Google Scholar 

  • Rufino RD, Sarubbo LA, Campos-Takaki GM (2007) Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 23(5):729–734

    CAS  Google Scholar 

  • Rufino RD, de Luna JM, Sarubbo LA, Marona Rodrigues LR, Teixeira JAC, de Campos-Takaki GM (2011) Antimicrobial and anti-adhesive potential of a biosurfactants produced by Candida Species. Practical applications in biomedical engineering; Chapter 10; doi: 10.5772/52578

  • Sadouk Z, Tazerouti A, Hacene H (2009) Biodegradation of diesel oil and production of fatty acid esters by a newly isolated Pseudomonas citronellolis KHA. World J Microbiol Biotechnol 25:65–70

    CAS  Google Scholar 

  • Saeki H, Sasaki M, Komatsu K, Miura Matsuda H (2009) Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour Technol 100:572–577

    CAS  Google Scholar 

  • Salehizadeh H, Mohammadizad S (2009) Microbial enhanced oil recovery using biosurfactant produced by Alcaligenes faecalis. Iran J Biotechnol 7(4):216–223

    CAS  Google Scholar 

  • Salihu A, Abdulkadir I, Almustapha MN (2009) An investigation for potential development on biosurfactants. Biotechnol Mol Biol Rev 3(5):111–117

    Google Scholar 

  • Sarubbo LA, de Luna JM, de Campos-Takaki GM (2006) Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP 1002. Elect J Biotechnol 9(4):400–406

    Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    CAS  Google Scholar 

  • Seghal Kiran G, Hema TA, Gandhimathi R, Selvin J, Anto Thomas T, Rajeetha Ravji T, Natarajaseenivasan K (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B Biointerf 73(2):250–256

    Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci 34:714–724

    CAS  Google Scholar 

  • Seo HS, Michalek SM, Nahm MH (2008) Lipoteichoic Acid Is Important in Innate Immune Responses to Gram-Positive Bacteria. Infect Immun 76(1):206–213

    CAS  Google Scholar 

  • Sharma A, Novak EK, Sojar HT, Swank RT, Kuramitsu HK, Genco RJ (2000) Porphyromonas gingivalis platelet aggregation activity: outer membrane vesicles are potent activators of murine platelets. Oral Microbiol Immunol 15:393–396

    CAS  Google Scholar 

  • Song H-Y, Kim Y-H, Seok S-J, Gil H-W, Yang J-O, Lee E-Y, Hong S-Y (2012) Cellular toxicity of surfactants used as herbicide additives. J Korean Med Sci 27:3–9

    CAS  Google Scholar 

  • Stratton HM, Brooks PR, Griffiths PC, Seviour RJ (2002) Cell surface hydrophobicity and mycolic acid composition of Rhodococcus strains isolated from activated sludge foam. J Ind Microbiol Biotechnol 28:264–267

    CAS  Google Scholar 

  • Su W-T, Chen W-J, Lin Y-F (2009) Optimizing emulsan production of A. venetianus RAG-1 using response surface methodology. Appl Microbiol Biotechnol 84:271–279

    CAS  Google Scholar 

  • Suthar H, Hingurao K, Desai A, Nerurkar A (2008) Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. J Microbiol Methods 75:225–230

    CAS  Google Scholar 

  • Tahara Y, Yamada Y, Kondo K (1976) A new lipid; the ornithine and taurine-containing ‘cerilipin’. Agric Biol Chem 40:243–244

    CAS  Google Scholar 

  • Toledo FL, Gonzalez-Lopez J, Calvo C (2008) Production of bioemulsifier by Bacillus subtilis, Alcaligenes faecalis and Enterobacter species in liquid culture. Bioresour Technol 99:8470–8475

    CAS  Google Scholar 

  • Toren A, Navon-Venezia S, Ron EZ, Rosenberg E (2001) Emulsifying activities of purified alasan proteins from Acinetobacter radioresistens KA53. Appl Environ Microbiol 67:1102–1106

    CAS  Google Scholar 

  • Trindade JR, Freire MG, Amaral PFF, Coelho MAZ, Coutinho JAP, Marrucho IM (2008) Aging mechanisms of oil-in-water emulsions based on a bioemulsifier produced by Yarrowia lipolytica. Colloids Surf A Physicochem Eng Aspects 324:149–154

    CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Antonova D, Todorov T, Stoineva I (2009) Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochem 44:135–141

    CAS  Google Scholar 

  • Van Dyke M, Gulley S, Lee H, Trevors J (1993) Evaluation of microbial surfactants for recovery of hydrophobic compounds in soil. J Ind Microbiol Biotechnol 11:163–170

    Google Scholar 

  • Vesper SJ (1987) Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots. Appl Environ Microbiol 53(7):1397–1405

    CAS  Google Scholar 

  • Walencka E, Wieckowska-Szakiel M, Rozalska S, Sadowska B, Rozalska B (2007) A surface-active agent from Saccharomyces cerevisiae influences staphylococcal adhesion and biofilm development. Z Naturforsch C 62(5–6):433–438

    CAS  Google Scholar 

  • Wong JWC, Zhao Z, Zheng G (2010) Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Proceedings of annual international conference on soils, sediments, water and energy

  • Huang X-f, Peng K, Feng Y, Liu J, Lu L (2013) Separation and characterization of effective demulsifying substances from surface of Alcaligenes sp. S-XJ-1 and its application in water-in-kerosene emulsion. Bioresour Technol 13:257–264

    Google Scholar 

  • Yim JH, Ahn SH, Kim SJ, Lee YK, Park KJ, Lee HK (2005) Production of novel exopolysaccharide with emulsifying ability from marine microorganism, Alteromonas sp. strain 00SS11568. Key Eng Mat 277(279):155–161

    Google Scholar 

  • Zhang Q, He G, Wang J, Cai W, Xu Y (2009) Mechanisms of the stimulatory effects of rhamnolipid biosurfactant on rice straw hydrolysis. Appl Energy 86:233–237

    Google Scholar 

  • Zhao Z, Wong JWC (2009) Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene. Environ Technol 30(3):291–299

    Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from ‘‘Tunisian Ministry of Higher Education, Scientific Research and Technology”.

Conflict of interest

The authors report no declaration of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inès Mnif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnif, I., Ghribi, D. High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications. World J Microbiol Biotechnol 31, 691–706 (2015). https://doi.org/10.1007/s11274-015-1830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1830-5

Keywords

Navigation