Skip to main content
Log in

Approaches for the generation of active papain-like cysteine proteases from inclusion bodies of Escherichia coli

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Papain-like cysteine proteases are widely expressed, fulfill specific functions in extracellular matrix turnover, antigen presentation and processing events, and may represent viable drug targets for major diseases. In depth and rigorous studies of the potential for these proteins to be targets for drug development require sufficient amounts of protease protein that can be used for both experimental and therapeutic purposes. Escherichia coli was widely used to express papain-like cysteine proteases, but most of those proteases are produced in insoluble inclusion bodies that need solubilizing, refolding, purifying and activating. Refolding is the most critical step in the process of generating active cysteine proteases and the current approaches to refolding include dialysis, dilution and chromatography. Purification is mainly achieved by various column chromatography. Finally, the attained refolded proteases are examined regarding their protease structures and activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn SJ, Seo JS, Kim M-S, Jeon SJ, Kim NY, Jang JH et al (2007) Cloning, site-directed mutagenesis and expression of cathepsin L-like cysteine protease from Uronema marinum (Ciliophora: Scuticociliatida). Mol Biochem Parasitol 156:191–198

    Article  CAS  Google Scholar 

  • Alessio KJD, McQueney MS, Brun KA, Orsini MJ, Debouck CM (1999) Expression in Escherichia coli, refolding, and purification of human procathepsin K, an osteoclast-specific protease. Protein Expr Purif 15:213–220

    Article  Google Scholar 

  • Asp T, Bowra S, Borg S, Holm P (2004) Molecular cloning, functional expression in Escherichia coli and enzymatic characterisation of a cysteine protease from white clover (Trifolium repens). Biochim Biophys Acta 1699:111–122

    Article  CAS  Google Scholar 

  • Asturias J, Ibarrola I, Arilla M, Vidal C, Ferrer A, Gamboa P et al (2009) Engineering of major house dust mite allergens Der p 1 and Der p 2 for allergen-specific immunotherapy. Clin Exp Allergy 39:1088–1098

    Article  CAS  Google Scholar 

  • Best EA, Stedman KE, Bozic CM, Hunter SW, Vailes L, Chapman MD et al (2000) A recombinant group 1 house dust mite allergen, rDer f 1, with biological activities similar to those of the native allergen. Protein Expr Purif 20:462–471

    Article  CAS  Google Scholar 

  • Brömme D (2001) Papain-like cysteine proteases. Curr Protoc Protein Sci. doi:10.1002/0471140864.ps2102s21

  • Bromme D, Nallaseth F, Turk B (2004) Production and activation of recombinant papain-like cysteine proteases. Methods 32:199–206

    Article  CAS  Google Scholar 

  • Caldeira RL, Gonçalves L, Martins TM, Silveira H, Novo C, Rosário VD et al (2009) Plasmodium chabaudi: expression of active recombinant chabaupain-1 and localization studies in Anopheles sp. Exp Parasitol 122:97–105

    Article  CAS  Google Scholar 

  • Calderone TL, Stevens RD, Oas TG (1996) High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol 262:407–412

    Article  CAS  Google Scholar 

  • Chan MM, Fong D (1988) Expression of human cathepsin B protein in Escherichia coli. FEBS Lett 239:219–222

    Article  CAS  Google Scholar 

  • Chen Y-J, Huang L-W, Chiu H-C, Lin S-C (2003) Temperature responsive polymer-assisted protein refolding. Enzyme Microb Technol 32:120–130

  • Chen L, Sun L (2012) Cathepsin B of Cynoglossus semilaevis: identification, expression, and activity analysis. Comp Biochem Physiol B: Biochem Mol Biol 161:54–59

    Article  CAS  Google Scholar 

  • Choudhury D, Roy S, Chakrabarti C, Biswas S, Dattagupta JK (2009) Production and recovery of recombinant propapain with high yield. Phytochemistry 70:465–472

  • Clark EDB (2001) Protein refolding for industrial processes. Curr Opin Biotechnol 12:202–207

    Article  CAS  Google Scholar 

  • Clark EDB, Schwarz E, Rudolph R (1999) Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol 309:217–236

    Article  Google Scholar 

  • Cleland JL, Hedgepeth C, Wang D (1992) Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. J Biol Chem 267:13327–13334

    CAS  Google Scholar 

  • Coutard B, Danchin EG, Oubelaid R, Canard B, Bignon C (2012) Single pH buffer refolding screen for protein from inclusion bodies. Protein Expr Purif 82:352–359

    Article  CAS  Google Scholar 

  • Dahl SW, Halkier T, Lauritzen C, Dolenc I, Pedersen J, Turk V et al (2001) Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40:1671–1678

    Article  CAS  Google Scholar 

  • Demuth H (1990) Recent developments in inhibiting cysteine and serine proteases. J Enzyme Inhib 3:249–278

    Article  CAS  Google Scholar 

  • Dolinar M, Maganja DB, Turk V (1995) Expression of full-length human procathepsin L cDNA in Escherichia coll and refolding of the expression product. Biol Chem Hoppe Seyler 376:385–388

    Article  CAS  Google Scholar 

  • Dutta S, Ghosh R, Dattagupta JK, Biswas S (2010) Heterologous expression of a thermostable plant cysteine protease in Escherichia coli both in soluble and insoluble forms. Process Biochem 45:1307–1312

    Article  CAS  Google Scholar 

  • Eakin AE, Mills A, Harth G, McKerrow JH, Craik CS (1992) The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J Biol Chem 267:7411–7420

    CAS  Google Scholar 

  • Ejima D, Ono K, Tsumoto K, Arakawa T, Eto Y (2006) A novel “reverse screening” to identify refolding additives for activin-A. Protein Expr Purif 47:45–51

    Article  CAS  Google Scholar 

  • Gu Z, Su Z, Janson J-C (2001) Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding. J Chromatogr A 918:311–318

    Article  CAS  Google Scholar 

  • Hwang HS, Chung H-S (2002) Preparation of active recombinant cathepsin K expressed in bacteria as inclusion body. Protein Expr Purif 25:541–546

    Article  CAS  Google Scholar 

  • Joo HS, Koo KB, Park KI, Bae SH, Yun JW, Chang CS et al (2007) Cloning and expression of the cathepsin F-like cysteine protease gene in Eschrichia coli and its characterization. J Microbiol 45:158–167

    CAS  Google Scholar 

  • Jungbauer A, Kaar W (2007) Current status of technical protein refolding. J Biotechnol 128:587–596

    Article  CAS  Google Scholar 

  • Kim NY, Ahn SJ, Lee AR, Seo JS, Kim MS, Kim JK et al (2010) Cloning, expression analysis and enzymatic characterization of cathepsin S from olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B: Biochem Mol Biol 157:238–247

    Article  Google Scholar 

  • Kopetzki E, Schumacher G, Buckel P (1989) Control of formation of active soluble or inactive insoluble baker’s yeast α-glucosidase PI in Escherichia coli by induction and growth conditions. Mol Gen Genet 216:149–155

    Article  CAS  Google Scholar 

  • Kopitar G, Dolinar M, Strukelj B, Pungercar J, Turk V (1996) Folding and activation of human procathepsin S from inclusion bodies produced in Escherichia coli. Eur J Biochem 236:558–562

    Article  CAS  Google Scholar 

  • Kramer G, Paul A, Kreusch A, Schuler S, Wiederanders B, Schilling K (2007) Optimized folding and activation of recombinant procathepsin L and S produced in Escherichia coli. Protein Expr Purif 54:147–156

    Article  CAS  Google Scholar 

  • Kuhelj R, Dolinar M, Pungercar J, Turk V (1995) The preparation of catalytically active human cathepsin B from its precursor expressed in Escherichia coli in the form of inclusion bodies. Eur J Biochem 229:533–539

    Article  CAS  Google Scholar 

  • Lecaille F, Kaleta J, Brömme D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102:4459–4488

    Article  CAS  Google Scholar 

  • Lee AR, Bak HJ, Kim NY, Kim M-S, Go H-J, Han JW et al (2012) Cloning, heterologous expression, and enzymatic characterization of cathepsin L from starfish (Asterina pectinifera). Biosci Biotechnol Biochem 76:2342–2346

    Article  CAS  Google Scholar 

  • Leung-Toung R, Li W, Tam T, Karimian K (2002) Thiol-dependent enzymes and their inhibitors: a review. Curr Med Chem 9:979–1002

    Article  CAS  Google Scholar 

  • Li M, Zhang G, Su Z (2002) Dual gradient ion-exchange chromatography improved refolding yield of lysozyme. J Chromatogr A 959:113–120

    Article  CAS  Google Scholar 

  • Li M, Su Z-G, Janson J-C (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10

    Article  Google Scholar 

  • Liu H-S, Chang C-K (2003) Chaperon solvent plug to enhance protein refolding in size exclusion chromatography. Enzyme Microb Technol 33:424–429

    Article  CAS  Google Scholar 

  • Marquis R, Ru Y, Yamashita D, Oh H, Yen J, Thompson S et al (1999) Potent dipeptidylketone inhibitors of the cysteine protease cathepsin K. Bioorg Med Chem 7:581–588

    Article  CAS  Google Scholar 

  • McQueney MS, Amegadzie BY, D’Alessio K, Hanning CR, McLaughlin MM, McNulty DCS et al (1997) Autocatalytic activation of human cathepsin K. J Biol Chem 272:13955–13960

    Article  CAS  Google Scholar 

  • Miyaji T, Murayama S, Kouzuma Y, Kimura N, Kanost MR, Kramer KJ et al (2010) Molecular cloning of a multidomain cysteine protease and protease inhibitor precursor gene from the tobacco hornworm (Manduca sexta) and functional expression of the cathepsin F-like cysteine protease domain. Insect Biochem Mol Biol 40:835–846

    Article  CAS  Google Scholar 

  • Na B, Shenai B, Sijwali P, Choe Y, Pandey K, Singh A et al (2004) Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax. Biochem J 378:529–538

    Article  CAS  Google Scholar 

  • Novinec M, Pavsic M, Lenarcic B (2012) A simple and efficient protocol for the production of recombinant cathepsin V and other cysteine cathepsins in soluble form in Escherichia coli. Protein Expr Purif 82:1–5

  • Prasad R, Atul Soni A, Puri SK, Sijwali PS (2012) Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite. PLoS One 7:e51619

    Article  CAS  Google Scholar 

  • Raines R (1997) Nature’s transitory covalent bond. Nat Struct Biol 4:424–427

    Article  CAS  Google Scholar 

  • Raman B, Ramakrishna T, Rao CM (1996) Refolding of denatured and denatured/reduced lysozyme at high concentrations. J Biol Chem 271:17067–17072

  • Rawlings ND, Salvesen G (2013) Handbook of proteolytic enzymes. Academic Press, London

  • Riese RJ, Mitchell RN, Villadangos JA, Shi G-P, Palmer JT, Karp ER et al (1998) Cathepsin S activity regulates antigen presentation and immunity. J Clin Investig 101:2351–2363

    Article  CAS  Google Scholar 

  • Roy S, Dattagupta JK, Biswas S (2012) Expression of recombinant human cathepsin K is enhanced by codon optimization. Process Biochem 47:1944–1947

    Article  CAS  Google Scholar 

  • Rudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J: Off Publ Fed Am Soc Exp Biol 10:49–56

    CAS  Google Scholar 

  • Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21

    Article  CAS  Google Scholar 

  • Santamaria I, Velasco G, Pendas A, Paz A, Lopez-Otin C (1999) Molecular cloning and structural and functional characterization of human cathepsin F, a new cysteine proteinase of the papain family with a long propeptide domain. J Biol Chem 274:13800–13809

    Article  CAS  Google Scholar 

  • Sarduy ES, Munoz AC, Trejo SA, Chavez Planes MDLA (2012) High-level expression of Falcipain-2 in Escherichia coli by codon optimization and auto-induction. Protein Expr Purif 83:59–69

    Article  CAS  Google Scholar 

  • Schein CH, Noteborn MH (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nat Biotechnol 6:291–294

    Article  CAS  Google Scholar 

  • Sharapova OA, Yurkova MS, Laurinavichyute DK, Andronova SM, Fedorov AN, Severin SE et al (2011) Efficient refolding of a hydrophobic protein with multiple S–S bonds by on-resin immobilized metal affinity chromatography. J Chromatogr A 1218:5115–5119

    Article  CAS  Google Scholar 

  • Sijwali PS, Brinen LS, Rosenthal PJ (2001a) Systematic optimization of expression and refolding of the Plasmodium falciparum cysteine protease Falcipain-2. Protein Expr Purif 22:128–134

    Article  CAS  Google Scholar 

  • Sijwali PS, Shenai B, Gut J, Singh A, Rosenthal P (2001b) Expression and characterization of the Plasmodium falciparum haemoglobinase Falcipain-3. Biochem J 360:481–489

    Article  CAS  Google Scholar 

  • Sijwali PS, Shenai BR, Rosenthal PJ (2002) Folding of the Plasmodium falciparum cysteine protease Falcipain-2 is mediated by a chaperone-like peptide and not the prodomain. J Biol Chem 277:14910–14915

    Article  CAS  Google Scholar 

  • Singh A, Shenai B, Choe Y, Gut J, Sijwali P, Craik C et al (2002) Critical role of amino acid 23 in mediating activity and specificity of vinckepain-2, a papain-family cysteine protease of rodent malaria parasites. Biochem J 368:273–281

    Article  CAS  Google Scholar 

  • Singh A, Walker KJ, Sijwali PS, Lau AL, Rosenthal PJ (2007) A chimeric cysteine protease of Plasmodium berghei engineered to resemble the Plasmodium falciparum protease falcipain-2. Protein Eng Des Sel 20:171–177

  • Smith SM, Gottesman MM (1989) Activity and deletion analysis of recombinant human cathepsin L expressed in Escherichia coli. J Biol Chem 264:20487–20495

    CAS  Google Scholar 

  • Takahashi K, Takai T, Yasuhara T, Yuuki T, Ohtake Y, Yokota T et al (2000) Production of enzymatically and immunologically active Der f 1 in Escherichia coli. Int Arch Allergy Immunol 122:108–114

    Article  CAS  Google Scholar 

  • Takai T, Mineki R, Nakazawa T, Takaoka M, Yasueda H, Murayama K et al (2002) Maturation of the activities of recombinant mite allergens Der p 1 and Der f 1, and its implication in the blockade of proteolytic activity. FEBS Lett 531:265–272

    Article  CAS  Google Scholar 

  • Takaomi Y, Toshiro T, Toshifumi Y, Hirokazu O, Yasushi O (2001) Cloning and expression of cDNA encoding the complete prepro-form of an isoform of Der f 1, the major group 1 allergen from house dust mite Dermatophagoides farinae. Biosci Biotechnol Biochem 65:563–569

    Article  Google Scholar 

  • Tobbell D, Middleton B, Raines S, Needham M, Taylor I, Beveridge J et al (2002) Identification of in vitro folding conditions for procathepsin S and cathepsin S using fractional factorial screens. Protein Expr Purif 24:242–254

    Article  CAS  Google Scholar 

  • Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1–8

    Article  CAS  Google Scholar 

  • Vallejo LF, Rinas U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 3:11–22

    Article  Google Scholar 

  • Velasco G, Ferrando AA, Puente XS, Shchez LM, López-Otín C (1994) Human cathepsin O: molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues. J Biol Chem 269:27136–27142

    CAS  Google Scholar 

  • Vernet T, Tessier DC, Laliberte F, Dignard D, Thomas DY (1989) The expression in Escherichia coli of a synthetic gene coding for the precursor of papain is prevented by its own putative signal sequence. Gene 77:229–236

  • Vincentelli R, Canaan S, Campanacci V, Valencia C, Maurin D, Frassinetti F et al (2004) High-throughput automated refolding screening of inclusion bodies. Protein Sci: A Publ Protein Soc 13:2782–2792

    Article  CAS  Google Scholar 

  • Werner MH, Clore GM, Gronenborn AM, Kondoh A, Fisher RJ (1994) Refolding proteins by gel filtration chromatography. FEBS Lett 345:125–130

    Article  CAS  Google Scholar 

  • West S, Chaudhuri J, Howell J (1998) Improved protein refolding using hollow-fibre membrane dialysis. Biotechnol Bioeng 57:590–599

    Article  CAS  Google Scholar 

  • Wetlaufer DB, Branca PA, Chen G-X (1987) The oxidative folding of proteins by disulfide plus thiol does not correlate with redox potential. Protein Eng 1:141–146

    Article  CAS  Google Scholar 

  • Wu J, Yang Y, Watson JT (1998) Trapping of intermediates during the refolding of recombinant human epidermal growth factor(hEGF) by cyanylation, and susbsequent structural elucidation by mass spectrometry. Protein Sci: A Publ Protein Soc 7:1017–1028

    Article  CAS  Google Scholar 

  • Yamamoto Y, Watabe S, Kageyama T, Takahashi SY (1999) Proregion of Bombyx mori cysteine proteinase functions as an intramolecular chaperone to promote proper folding of the mature enzyme. Arch Insect Biochem Physiol 42:167–178

    Article  CAS  Google Scholar 

  • Yamashita D, Dodds R (2000) Cathepsin K and the design of inhibitors of cathepsin K. Curr Pharm Des 6:1–24

    Article  CAS  Google Scholar 

  • Yasuhara T, Takai T, Yuuki T, Okudaira H, Okumura Y (2001) Biologically active recombinant forms of a major house dust mite group 1 allergen Der f 1 with full activities of both cysteine protease and IgE binding. Clin Exp Allergy: J Br Soc Allergy Clin Immunol 31:116–124

    Article  CAS  Google Scholar 

  • Zhang W, Xiao W, Wei H, Zhang J, Tian Z (2006) mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem Biophys Res Commun 349:69–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Great Project (2011ZX08011-005) from the Major Program of National Science and Technology of China and the National Natural Science Foundation of China (81373128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deqiu Lin or Ailin Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, C., Zhang, J., Lin, D. et al. Approaches for the generation of active papain-like cysteine proteases from inclusion bodies of Escherichia coli . World J Microbiol Biotechnol 31, 681–690 (2015). https://doi.org/10.1007/s11274-015-1804-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1804-7

Keywords

Navigation