Skip to main content
Log in

Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l−1), manganese (1.5, 10 and 25 mg l−1) and copper (1.5, 10 and 25 mg l−1) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azabou S, Mechichi T, Patel BKC, Sayadi S (2007) Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source. J Hazard Mater 140:264–270

    Article  CAS  Google Scholar 

  • Bertolino SM, Rodrigues ICB, Guerra-Sa R, Aquino SF, Leao VA (2012) Implications of volatile fatty acid profile on the metabolic pathway during continuous sulfate reduction. J Environ Manag 103:15–23

    Article  CAS  Google Scholar 

  • Cabrera G, Pérez R, Gómez JM, Ábalos A, Cantero D (2006) Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J Hazard Mater 135:40–46

    Article  CAS  Google Scholar 

  • Cao J, Zhang G, Mao Z, Fang Z, Yang C (2009) Precipitation of valuable metals from bioleaching solution by biogenic sulfides. Miner Eng 22(3):289–295. doi:10.1016/j.mineng.2008.08.006

    Article  CAS  Google Scholar 

  • Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9

    CAS  Google Scholar 

  • Cypionka H (1995) Solute transport and cells energetics. In: Barton LL (ed) Sulfate-reducing bacteria. Plenum Press, New York, pp 152–184

    Google Scholar 

  • Dvorak DH, Hedin RS, Edenborn HM, McIntire PE (1992) Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors. J Biotechnol Bioeng 40:609–616

    Article  CAS  Google Scholar 

  • El Bayoumy MA, Bewtra JK, Ali HI, Biswas N (1999) Sulfide production by sulfate reducing bacteria with lactate as feed in an upflow anaerobic fixed film reactor. Water Air Soil Pollut 112:67–84

    Article  Google Scholar 

  • Ferreira BCS, Lima RMF, Leão VA (2012) Remoção de sulfato de efluentes industriais por precipitação. Engenharia Sanitária e Ambiental 16(2):1–8

    Google Scholar 

  • Geets J, Borremans B, Diels L (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate reducing bacteria. J Microbiol Methods 66:194–205

    Article  CAS  Google Scholar 

  • Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:203–256

    Article  CAS  Google Scholar 

  • Icgen B, Harrison S (2006) Exposure to sulfide causes populations shifts in sulfate-reducing consortia. Res Microbiol 157:784–791

    Article  CAS  Google Scholar 

  • Jin S, Drever James I, Colberg Patricia JS (2007) Effects of copper on sulfate reduction in bacterial consortia enriched from metal-contaminated and uncontaminated sediments. Environ Toxicol Chem 26:225–230

    Article  CAS  Google Scholar 

  • Kaksonen AH, Riekkola-vanhanen M, Puhakka JA (2003) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37:255–266

    Article  CAS  Google Scholar 

  • Kaksonen AH, Plumb JJ, Robertson WJ, Riekkola-vanhanen M (2006) The performance, kinetics and microbiology of sulfidogenic fluidized-bed treatment of acidic metal- and sulfate-containing wastewater. Hydrometallurgy 83:204–213. doi:10.1016/j.hydromet.2006.03.025

    Article  CAS  Google Scholar 

  • Kleikemper J, Pelz O, Schroth MH, Zeyer J (2002) Sulfate-reducing bacterial community response to carbon source amendments in contaminated aquifer microcosms. FEMS Microbiol Ecol 42:109–118

    Article  CAS  Google Scholar 

  • Lens PNL, Visser A, Janssen AJH, Pol LWH, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28:41–88

    Article  CAS  Google Scholar 

  • Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463

    Article  CAS  Google Scholar 

  • Manilal VB, Litvin-scramm SB, Suidan MT (2000) Effect of sulphidogenesis on acid-phase digestion of waste activated sludge. Bioprocess Eng 23:595–597

    Article  CAS  Google Scholar 

  • Maree JP, Greben HA, Beer M (2004) Treatment of acid and sulphate-rich effluents in an integrated biological/chemical process. Water SA 30:183–189

    Article  CAS  Google Scholar 

  • Martins M, Faleiro ML, Barros RJ, Veríssimo AR, Barreiros MA, Costa MC (2009) Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. J Hazard Mater 166:706–713

    Article  CAS  Google Scholar 

  • Medírcio SN, Leao VA, Teixeira MC (2007) Specific growth rate of sulfate reducing bacteria in the presence of manganese and cadmium. J Hazard Mater 143:593–596

    Article  Google Scholar 

  • Meers E, Qadir M, de Caritat P, Tack FMG, Du Laing G, Zia MH, Saifullah (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74:1279–1291

    Article  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nature Rev Microbiol 6:441–454. doi:10.1038/nrmicro1892

    CAS  Google Scholar 

  • Neculita CM, Zagury GJ (2008) Biological treatment of highly contaminated acid mine drainage in batch reactors: long-term treatment and reactive mixture characterization. J Hazard Mater 157:358–366

    Article  CAS  Google Scholar 

  • Oyekola OO, Hille RPV, Harrison STL (2009) Study of anaerobic lactate metabolism under biosulfidogenic conditions. Water Res 43:3345–3354. doi:10.1016/j.watres.2008.11.044

    Article  CAS  Google Scholar 

  • Pol LWH, Lens PNL, Stams AJM, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9:213–224

    Article  CAS  Google Scholar 

  • Postgate JR (1979) The sulphate-reducing bacteria, 1st edn. Cambridge University Press, London

    Google Scholar 

  • Poulson SR, Colberg PJS, Drever JI (1997) Toxicity of heavy metal (Ni, Zn) to Desulfovibrio desulfuricans. Geomicrobiol J 14:41–49

    Article  CAS  Google Scholar 

  • R Core Team (2012). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Rampinelli L, Azevedo R, Teixeira M, Guerra-Sá R, Leão VA (2008) A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions. Biodegradation 19:613–619. doi:10.1007/s10532-007-9166-y

    Article  CAS  Google Scholar 

  • Sani RK, Peyton BM, Brown LT (2001) Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead. Appl Environ Microbiol 67:4765–4772. doi:10.1128/AEM.67.10.4765

    Article  CAS  Google Scholar 

  • Silva AM, Lima RMF, Leao VA (2012) Mine water treatment which limestone for sulfate removal. J Hazard Mater 221–222:45–55

    Article  Google Scholar 

  • Steed VS, Suidan MT, Gupta M, Miyahara T, Acheson CM, Sayles GD (2000) Development of a sulfate-reducing biological process to remove heavy metals from acid mine drainage. Water Environ Res 72:530–535

    Article  CAS  Google Scholar 

  • Velasco A, Ram M, Volke-sep T, Gonz A (2008) Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation. J Hazard Mater 151:407–413. doi:10.1016/j.jhazmat.2007.06.004

    Article  CAS  Google Scholar 

  • Wang A, Ren N, Wang X, Lee D (2008) Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria. J Hazard Mater 154:1060–1065

    Article  CAS  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  CAS  Google Scholar 

  • Zhao Y, Ren N, Wang A (2008) Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Chemosphere 72:233–242

    Article  CAS  Google Scholar 

  • Zhao YG, Wang A-J, Ren N-Q (2010) Effect of carbon sources on sulfidogenic bacterial communities during the starting-up of acidogenic sulfate-reducing bioreactors. Bioresour Technol 101:2952–2959

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this work provided by Vale, Finep, CNPq, and FAPEMIG is gratefully appreciated. Authors wish also to thank to the “Universidade Federal de Ouro Preto” and CAPES for the undergraduate and graduate students scholarships. The authors owe special thanks to Dr. R. Afonso for his collaboration and technical supporting during organic acid analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, L.P., Costa, P.F., Bertolino, S.M. et al. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio. World J Microbiol Biotechnol 30, 2171–2180 (2014). https://doi.org/10.1007/s11274-013-1592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1592-x

Keywords

Navigation