Skip to main content
Log in

Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Using random chemical mutagenesis we obtained the mutant of Cupriavidus necator H16 which was capable of improved (about 35 %) production of poly(3-hydroxybuytrate) (PHB) compared to the wild-type strain. The mutant exhibited significantly enhanced specific activities of enzymes involved in oxidative stress response such as malic enzyme, NADP-dependent isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase. Probably, due to the activation of these enzymes, we also observed an increase of NADPH/NADP+ ratio. It is likely that as a side effect of the increase of NADPH/NADP+ ratio the activity of PHB biosynthetic pathway was enhanced, which supported the accumulation of PHB. Furthermore, the mutant was also able to incorporate propionate into copolymer poly(3-hydroxybuytyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] more efficiently than the wild-type strain (Y3HV/prec = 0.17 and 0.29 for the wild-type strain and the mutant, respectively)). We assume that it may be caused by lower availability of oxaloacetate for the utilization of propionyl-CoA in 2-methylcitrate cycle due to increased action of malic enzyme. Therefore, propionyl-CoA was incorporated into copolymer rather than transformed to pyruvate via 2-methylcitrate cycle. Thus, the mutant was capable of the utilization of waste frying oils and the production of P(3HB-co-3HV) with better yields and improved content of 3HV resulting in better mechanical properties of copolymer than the wild-type strain. The results of this work may be used for the development of innovative fermentation strategies for the production of PHA and also it might help to define novel targets for the genetic manipulations of PHA producing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adwitiya P, Ashwini P, Avinash AK, Badri R, Kajal D, Vomsi P, Sridividya S (2009) Mutagenesis of Bacillus thuringiensis IAM 12077 for increasing poly(-β-)hydroxybutyrate (PHB) production. Turk J Biol 33:225–230

    CAS  Google Scholar 

  • Akiyama M, Taima Y, Doi Y (1992) Production of poly(3-hydroxyalkanoates) by bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl Microbiol Biotehnol 37:698–701

    CAS  Google Scholar 

  • Alias Z, Tan IKP (2005) Isolation of palm oil-utilazing, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichement technique. Bioresour Technol 96:1229–1234

    Article  CAS  Google Scholar 

  • Annuar MSM, Tan IKP, Ibrahim S, Ramachandran KB (2007) Production of medium-chain-length poly(3-hydroxyalkanoates) from crude fatty acids mixture by Pseudomonas putida. Food Bioprod Process 85:104–119

    Article  CAS  Google Scholar 

  • Ayub N, Tribelli PM, Lopez NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in Antarctic bacterium Pseudomonas sp. 14–3 during low temperature adaptation. Extremophiles 13:59–66

    Article  CAS  Google Scholar 

  • Bramer CO, Steinbuchel A (2001) The methylcitric acid pathway in Ralstonia eutropha: new genes identified and involved in propionate metabolism. Microbiology 147:2203–2214

    CAS  Google Scholar 

  • Bramer CO, Steinbuchel A (2002) The malate dehydrogenase of Ralstonia eutropha and functionality of the C3/C4 metabolism in Tn5-induced mdh mutant. FEMS Microbiol Lett 212:159–164

    CAS  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential application as a biodegradable polyester. Appl Environ Microbiol 54:1977–1982

    CAS  Google Scholar 

  • Bruland N, Voss I, Bramer C, Steinbuchel A (2010) Unravelling the C3/C4 carbon metabolism in Ralstonia eutropha H16. J Appl Microbiol 109:79–90

    CAS  Google Scholar 

  • Budde CF, Riedel SL, Hubner F, Risch S, Popovic MK, Rha C, Sinskey AJ (2011) Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89:1611–1619

    Article  CAS  Google Scholar 

  • Calhoun LN, Kwon YM (2010) Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. J Appl Microbiol 110:375–386

    Article  Google Scholar 

  • Chan PL, Yu V, Wai L, Yu HF (2006) Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas aeruginosa with fatty acids and alternative carbon sources. Appl Biochem Biotechnol 129:933–941

    Article  Google Scholar 

  • Choi JI, Lee SY (1997) Process analysis and economical evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17:335–342

    Article  CAS  Google Scholar 

  • Ewering C, Bramer C, Bruland N, Bethke A, Steinbuchel A (2006) Occurence and expression of tricarboxylate synthases in Ralstonia eutropha. Appl Microbiol Biotechnol 71:80–89

    Article  CAS  Google Scholar 

  • Faccin DJL, Correa MP, Rech R, Ayub MAZ, Secchi AR, Cardozo NSM (2012) Modeling P(3HB) production by Bacillus megaterium. J Chem Technol Biotechnol 87:325–333

    Article  CAS  Google Scholar 

  • Gao X, Yuan XX, Shi ZY, Guo YY, Shen XW, Chen JC, Wu Q, Chen GQ (2012) Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E-coli containing an optimized PHA synthase gene. Microb Cell Fact 11:130

    Article  CAS  Google Scholar 

  • Guzman H, Van-Thouac D, Martin J, Hatti-Kaul R, Quillaguaman J (2009) A process for the production of ectoine and poly(3-hydroxybutyrate) by Halomonas boliviensis. Appl Microbiol Biot 84:1069–1077

    Article  CAS  Google Scholar 

  • Ienczak JL, Schmidell W, de Aragao GMF (2013) High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 40:275–286. doi:10.1007/s10295-013-1236-z

    Article  CAS  Google Scholar 

  • Jung YM, Lee YH (2000) Utilization of oxidative pressure for enhanced production of poly-b-hydroxybutyrate and poly(3-hydroxybuytyrate-3-hydroxyvalerate) in Ralstonia eutropha. J Biosci Bioeng 90:266–270

    CAS  Google Scholar 

  • Kacmar J, Carlson R, Balogh SJ, Srienc F (2005) Staining and quantification of poly-3-hydroxybuytyrate in Saccharomyces cerevisiae and Cupriavidus necator cell population using automated flow cytometry. Cytometry Part A 69A:27–35

    Article  Google Scholar 

  • Kartika IA, Yani M, Ariono D, Evon P, Rigal L (2013) Biodiesel production from jatropha seeds: solvent extraction and in situ transesterification in a single step. Fuel 106:111–117

    Article  Google Scholar 

  • Kessler B, Wilholt B (1999) Poly(3-hydroxyalkanoates. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology—fermentation, biocatalysis and bioseparation. Wiley, New York, pp 2024–2040

    Google Scholar 

  • Kessler B, Wilholt B (2001) Factors involved in the regulatory of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104

    Article  CAS  Google Scholar 

  • Kimura H, Takahashi T, Hiraka H, Iwana M, Takeishi M (1999) Effective biosynthesis of poly(3-hydroxybutyrate) from plant oils by Chromobacterium sp. Polym J 31:210–212

    Article  CAS  Google Scholar 

  • Lee IY, Kim MK, Park YH, Lee SY (1996) Regulatory effect of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol Bioeng 52:702–712

    Google Scholar 

  • Marles-Wright J, Lewis RJ (2007) Stress response of bacteria. Curr Opin Struc Biol 17:755–760

    Article  CAS  Google Scholar 

  • Marsudi S, Unno H, Hori K (2008) Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 78:955–961

    Article  CAS  Google Scholar 

  • Moen B, Janbu AO, Langsrud S, Langsrud O, Hobman JL, Constantinidou C, Kohler A, Knut R (2009) Global responses of Escherichia coli to adverse conditions determined by microarrays and FT-IR spectroscopy. Can J Microbiol 55:714–728

    Article  CAS  Google Scholar 

  • Mothes G, Ackermann JU (2005) Synthesis of poly(3-hydroxy-butyrate-co-4-hydroxybutyrate) with a target mole fraction of 4-hydroxybutyric acid units by two-stage continuous cultivation of Delftia acidovorans P4a. Eng Life Sci 5:58–62

    Article  CAS  Google Scholar 

  • Mozejko J, Wilke A, Przybylek G, Ciesielski S (2012) Mcl-PHAs Produced by Pseudomona ssp Gl01 using fed-batch cultivation with waste rapeseed oil as carbon source. J Microbiol Biotechnol 22:371–377

    Article  CAS  Google Scholar 

  • Murakami K, Tsubouchi R, Fukayama M, Ogawa T, Yoshino M (2006) Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase. Arch Microbiol 186:385–392

    Article  CAS  Google Scholar 

  • Obruca S, Marova I, Snajdar O, Mravcova L, Svoboda Z (2010a) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett 39:1925–1932

    Article  Google Scholar 

  • Obruca S, Marova I, Stankova M, Mravcova L, Svoboda Z (2010b) Effect of ethanol and hydrogen peroxide on poly(3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol 26:1261–1267

    Article  CAS  Google Scholar 

  • Obruca S, Marova I, Svoboda Z, Mikulikova R (2010c) Use of controlled exogenous stress for improvement of poly(3-hydroxybutyrate) production in Cupriavidus necator. Folia Microbiol 55:17–22

    Article  CAS  Google Scholar 

  • Pradella JGC, Taciro MK, Pataquiva AY (2010) High-cell-den-sity poly (3-hydroxybutyrate) production from sucrose using Burkholderia sacchari culture in airlift bioreactor. Bioresour Technol 101:8355–8360

    Article  CAS  Google Scholar 

  • Rangel DEN (2011) Stress induced cross-protection against environmental challenges on prokaryotic and eukarytotic microbe. World J Microbiol Biotechnol 27:1281–1296

    Article  Google Scholar 

  • Reinecke F, Steinbuchel A (2009) Ralstonia eutropha Strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108

    Article  CAS  Google Scholar 

  • Ruiz JA, Lopez NI, Fernandez R, Mendez BS (2001) Polyhydroxyalkanoates degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl Environ Microbiol 67:225–230

    Article  CAS  Google Scholar 

  • Saito T, Fukui T, Ikeda F, Tanaka Y, Tomita K (1977) An NADP-linked acetoacetyl-CoA reductase from Zooglear amigera. Arch Microbiol 114:211–217

    Article  CAS  Google Scholar 

  • Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628

    Article  CAS  Google Scholar 

  • Singh R, Beriault R, Middaugh J, Hamel R, Chenier D, Appanna VD, Kalyuzhnyi S (2005) Aluminum-tolerant Pseudomonas fluorescens: rOS toxicity and enhanced NADPH production. Extremophiles 9:367–373

    Article  CAS  Google Scholar 

  • Singh R, Mailloux RJ, Puiseux-Dao S, Apanna V (2007) Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 189:6665–6675

    Article  CAS  Google Scholar 

  • Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple beta-ketothiolases mediate poly(beta-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987

    CAS  Google Scholar 

  • Spierkermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbuchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Taniguchi I, Kagotani K, Kimura Y (2003) Microbial production of poly(hydroxyalkanoates)s from waste edible oils. Green Chem 5:545–548

    Article  CAS  Google Scholar 

  • Vidal-Mas J, Resina-Pelfort O, Haba E, Comas J, Maresa A, Vives-Rego J (2001) Rapid flow cytometry—Nile red assssment of PHA cellular content bad heterogenitity in cultures of Pseudomonas aeruginosa 4ZT2 (NCIB 40044) grown in waste frying oil. Antonie Van Leeuwenhoek 80:57–63

    Article  CAS  Google Scholar 

  • Wang ZX, Bramer C, Steinbuchel A (2003) Two phenotypypically compensating isocitrate dehydrogenase in Ralstonia eutropha. FEMS Microbiol Lett 227:9–16

    Article  CAS  Google Scholar 

  • Yamane T, Fukunaga M, Lee YW (1996) Increased PHB production by high-cell-density fed-batch culture of Alcaligenes latus, a growth associated PHB producer. Biotechnol Bioeng 50:197–202

    Article  CAS  Google Scholar 

  • Yu J, Si YT (2004) Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short fatty acids. Biotechnol Prog 20:1015–1024

    Article  CAS  Google Scholar 

  • Zhang Z, Yu J, Stanton RC (2000) A method for determination of pyridine nucleotides using a single extract. Anal Biochem 285:163–167

    Article  CAS  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiol-SGM 153:2013–2025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project “Centre for Materials Research at FCH BUT” No. CZ.1.05/2.1.00/01.0012 from ERDF and by the project “Excellent young researcher at BUT” No. CZ.1.07./2.3.00/30.0039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Obruca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obruca, S., Snajdar, O., Svoboda, Z. et al. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J Microbiol Biotechnol 29, 2417–2428 (2013). https://doi.org/10.1007/s11274-013-1410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1410-5

Keywords

Navigation