Skip to main content
Log in

Isolation and characterization of three fungi with the potential of transforming glycyrrhizin

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Three fungi with different types of transformation of glycyrrhizin (GL) were isolated from the soil samples of glycyrrhiza glabra planting area in China. According to their morphologies and 18 S rDNA gene sequence analysis, the three fungi were identified and named as Penicillium purpurogenum Li-3, Aspergillus terreus Li-20 and Aspergillus ustus Li-62. Transforming products analysis by TLC and HPLC–MS indicated that P. purpurogenum Li-3, A. terreus Li-20 and A. ustus Li-62 could stably transform GL into GAMG, GAMG and GA, and GA, respectively. P. purpurogenum Li-3 was especially valuable to directly prepare GAMG for applications in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akao T (2000) Hasty effect on the metabolism of glycyrrhizin by Eubacterium sp. GLH with Ruminococcus sp. PO1-3 and Clostridium innocuum ES24-06 of human intestinal bacteria. Bio Pharm Bull 23(1):6–11

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  Google Scholar 

  • Beaud D, Ladire M, Azevedo V, Bridonneau C, Anba-Mondoloni J (2006) Genetic diversity of beta-glucuronidase activity among 14 strains of the dominant human gut anaerobe Ruminococcus gnavus. Genet Mol Biol 29(2):363–366

    Article  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31(13):3497–3500

    Article  CAS  Google Scholar 

  • Diane B, Patrick T, Jamila AJ (2005) Genetic characterization of the β-glucuronidase enzyme from a human intestinal bacterium Ruminococcus gnavus. Microbiol 151:2323–2330

    Article  Google Scholar 

  • Farese S, Kruse A, Pasch A, Dick B, Frey MB, Uehlinger DE, Frey FJ (2009) Glycyrrhetinic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney Int 76(8):877–884

    Article  CAS  Google Scholar 

  • Feng SJ, Li C, Xu XL, Wang XY (2006a) Screening strains for directed biosynthesis of β-D-mono- glucuronide-glycyrrhizin and kinetics of enzyme production. J Mol Catal B Enzym 43(1–4):63–67

    Article  CAS  Google Scholar 

  • Feng SJ, Li C, Cao ZA (2006b) Progress in glycosidase and modification of glycoside. Chin J Bioproc E 4:16–21

    CAS  Google Scholar 

  • Feng SJ, Li C, Li H, Wang XY (2007) Screening of producing glucuronidase strain and its enzymatic characteristics. J Chem E of Chin U 21:977–982

    CAS  Google Scholar 

  • Fishman WH (1991) Studies on β- glucuronidase. J Biol Chem 127(2):367

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension biodiversity-magnitude, significance and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hu Y, Yang L, Yang SL (2006) Progress in study of classification and mechanisms of glycosidases. Pharm Biotechnol 13:66–70

    CAS  Google Scholar 

  • Iwaki H, Nakai E, Nakamura S, Hasegawa Y (2008) Isolation and characterization of new cyclohexylacetic acid-degrading bacteria. Curr Microbiol 57(2):107–110

    Article  CAS  Google Scholar 

  • Kalaiarasi P, Pugalendi KV (2009) Anti hyperglycemic effect of 18 β-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats. Eur J Pharmacol 606(1–3):269–273

    Article  CAS  Google Scholar 

  • Kim DH, Lee SW (1999) Biotransformation of glycyrrhetinic acid-3-O-β-D-glucuronide by Streptococcus LJ-2 a human intestinal bacterium. Biol Pharm Bull 22(3):320–322

    Article  CAS  Google Scholar 

  • Kuramoto T, Ito Y, Oda M, Tamura Y, Kitahata S (1994) Microbial production for glycyrrhetic acid 3-Mono-β-D-glucuronide from glycyrrhizin by Cryptococcus magnus MG-27. Biosci Biotech Biochem 58(3):455–458

    Article  CAS  Google Scholar 

  • Li B, Jiang T, Wan SB, Ren S (2006) Progress in chemical modification and structure transformation of glycyrrhetic acid. Fine Chem 23:643–648

    CAS  Google Scholar 

  • Lu DQ, Li H, Dai Y, Ouyang PK (2006) Biocatalytic properties of a novel crude glycyrrhizin hydrolase from the liver of the domestic duck. J Mol Catal B Enzym 43(1–4):148–152

    Article  CAS  Google Scholar 

  • Ma J, Xin XL, Yuan QP, Wu ZM, Li XY (2008) Determination of 7 β-hydroxyglycyrrhetinic acid in microbial transformation of glycyrrhetinic acid by Mucor spinosus by HPLC. Microbiol 35:1664–1667

    CAS  Google Scholar 

  • Maatooq GT, Marzouk AM, Gray AI, Rosazza JP (2010) Bioactive microbial metabolites from glycyrrhetinic acid. Phytochemistry 71(2–3):262–270

    Article  CAS  Google Scholar 

  • Nurizzo D, Nagy T, Gilbert HJ, Davies GJ (2002) The structural basis for catalysis and specificity of the Pseudomonas cellulosa α-glucuronidase, GlcA67A. Structure 10(4):547–556

    Article  CAS  Google Scholar 

  • Pellati D, Fiore C, Armanini D, Rassu M, Bertolonil G (2009) In vitro effects of glycyrrhetinic acid on the growth of clinical isolates of Candida albicans. Phytother Res 23(4):572–574

    Article  CAS  Google Scholar 

  • Shi JH, Xiao JH, Wei DZ (2009) Synthesis of biotinylated 18 β-glycyrrhetinic acid and its effect on tumor cells activity. Med Chem Res 18(7):538–544

    Article  CAS  Google Scholar 

  • Song ZK, Wang XY, Chen GQ, Li C (2008) Cloning and prokaryotic expression of β-glucuronidase from Penicillium purpurogenum Li-3. J Chem Ind E 59:3101–3106

    CAS  Google Scholar 

  • Sun JQ, Huang X, Chen QL, Liang B, Qiu JG, Ali SW, Li SP (2009) Isolation and characterization of three Sphingobium sp. strains capable of degrading isoproturon and cloning of the catechol 1,2-dioxygenase gene from these strains. World J Microbiol Biotechnol 2(25):259–268

    Article  Google Scholar 

  • Tamir S, Eizenberg M, Somjen D, Stern N, Shelach R, Kaye A, Vaya J (2000) Estrogenic and anti proliferative properties of glabridin from licorice in human breast cancer cells. Cancer Res 60(20):5704–5709

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  Google Scholar 

  • Tohyama O, Imura A, Iwano A, Freund JN, Henrissat B, Fujimori T, Nabeshima Y (2004) Klotho is a novel β-glucuronidase capable of hydrolyzing steroid β-glucuronides. J Biol Chem 279(11):9777–9784

    Article  CAS  Google Scholar 

  • Vaya J, Belinky PA, Aviram M (1997) Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic Bio Med 23(2):302–313

    Article  CAS  Google Scholar 

  • Verdoucq L, Morinière J, Bevan DR, Esen A, Vasella A, Henrissat B, Czjze M (2004) Structural determinants of substrate specificity in family 1 β-glucosidases. J Biol Chem 279(30):31796–31803

    Article  CAS  Google Scholar 

  • Wu SJ, Yang ZJ, Zhu LH, Jin FX (2003) Study on biotransformation of glycyrrhizin. Chin Tradit Herb Drugs 34:516–519

    CAS  Google Scholar 

  • Yoshida K, Furihata K, Yamane H, Omori T (2001) Metabolism of 18-β-glycyrrhetic acid in Sphingomonas paucimobiliso strain G5. Biotechnol Lett 23(24):2253–2258

    Google Scholar 

  • Yu HS, Wu SJ, Jin FX, Guo Y (1998) Modification of glycyrrhizin glucuronide by enzyme to increasing its sweetness (I)-strain selection that produce β-glucuronidase. Food Ferment Ind 25(3):10–15

    Google Scholar 

  • Yu HS, Wu SJ, Jin FX, Guo Y (1999) Modification of glycyrrhizin glucuronide by enzyme to increasing its sweetness (I)-purification and characterization of β-glucuronidases. Food Ferment Ind 25(4):5–12

    CAS  Google Scholar 

  • Zhou JH, Cui YD, Li BN, Yang HR (2001) Food Additive. Chemical Industry Press, Beijing, pp 170–172

    Google Scholar 

  • Zou QG, Wei P, Li J, Ge ZX, Ouyang PK (2009) Simultaneous determination of 18 α- and 18 β-glycyrrhetic acid in human plasma by LC-ESI-MS and its application to pharmacokinetics. Biomed Chromatogr 23(1):54–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (No. 21176028 and No. 20976014), the Natural Science Foundation of Beijing (No.1172028) and Ph.D. Programs Foundation of Ministry of Education of China (No.2009101110036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Li or Xiao-Hong Zhou.

Additional information

C. Wang and X.-X. Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Guo, XX., Wang, XY. et al. Isolation and characterization of three fungi with the potential of transforming glycyrrhizin. World J Microbiol Biotechnol 29, 781–788 (2013). https://doi.org/10.1007/s11274-012-1233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1233-9

Keywords

Navigation