Skip to main content
Log in

Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to better understand the differences in xylose metabolism between natural xylose-utilizing Pichia stipitis and metabolically engineered Saccharomyces cerevisiae, we constructed a series of recombinant S. cerevisiae strains with different xylose reductase/xylitol dehydrogenase/xylulokinase activity ratios by integrating xylitol dehydrogenase gene (XYL2) into the chromosome with variable copies and heterogeneously expressing xylose reductase gene (XYL1) and endogenous xylulokinase gene (XKS1). The strain with the highest specific xylose uptake rate and ethanol productivity on pure xylose fermentation was selected to compare to P. stipitis under oxygen-limited condition. Physiological and enzymatic comparison showed that they have different patterns of xylose metabolism and NADPH generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

XR:

Xylose reductase

XDH:

Xylitol dehydrogenase

XK:

Xylulokinase

G6PDH:

Glucose-6-phosphate dehydrogenase

IDP:

Isocitrate dehydrogenase

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bruinenberg PM (1986) The NADP(H) redox couple in yeast metabolism. Antonie Van Leeuwenhoek 52:411–429

    Article  CAS  Google Scholar 

  • Bruinenberg PM, van Dijken JP, Scheffers WA (1983) An enzymic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol 129:965–971

    CAS  Google Scholar 

  • Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J (2012) Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Syst Biol 6:24

    Article  CAS  Google Scholar 

  • Ekino K, Hayashi H, Moriyama M, Matsuda M, Goto M, Yoshino S, Furukawa K (2002) Engineering of polyploid Saccharomyces cerevisiae for secretion of large amounts of fungal glucoamylase. Appl Environ Microbiol 68:5693–5697

    Article  CAS  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  CAS  Google Scholar 

  • Eliasson A, Hofmeyr JS, Pedler S, Hahn-Hagerbal B (2001) The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 29:288–297

    Article  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (1991) Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263

    Article  CAS  Google Scholar 

  • Grabowska D, Chelstowska A (2003) The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 278:13984–13988

    Article  CAS  Google Scholar 

  • Guo C, He P, Lu D, Shen A, Jiang N (2006) Cloning and molecular characterization of a gene coding d-xylulokinase (CmXYL3) from Candida maltosa. J Appl Microbiol 101:139–150

    Article  CAS  Google Scholar 

  • Jeffries TW (1983) Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol 27:1–32

    Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  CAS  Google Scholar 

  • Jeffries TW, Kurtzman CP (1994) Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme Microb Technol 16:922–932

    Article  CAS  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  CAS  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    Article  CAS  Google Scholar 

  • Jeppsson M, Johansson B, Jensen PR, Hahn-Hagerdal B, Gorwa-Grauslund MF (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20:1263–1272

    Article  CAS  Google Scholar 

  • Jin YS, Alper H, Yang YT, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71:8249–8256

    Article  CAS  Google Scholar 

  • Khattab SM, Watanabe S, Saimura M, Kodaki T (2011) A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis. Biochem Biophys Res Commun 404:634–637

    Article  CAS  Google Scholar 

  • Krahulec S, Klimacek M, Nidetzky B (2012) Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol 158:192–202

    Article  CAS  Google Scholar 

  • Krizkova L, Jelokova J (1991) A rapid and simple method for DNA preparation from Candida utilis. Folia Microbiol (Praha) 36:406–407

    Google Scholar 

  • Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191

    Article  CAS  Google Scholar 

  • Lighthelm ME, Prior BA, Preez JC, Brandt V (1988) An investigation of d-{1-13C} xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 28:293–296

    Google Scholar 

  • Liu EAHY (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210

    Article  CAS  Google Scholar 

  • Matsushika A, Oguri E, Sawayama S (2010) Evolutionary adaptation of recombinant shochu yeast for improved xylose utilization. J Biosci Bioeng 110:102–105

    Article  CAS  Google Scholar 

  • Minard KI, Jennings GT, Loftus TM, Xuan D, McAlister-Henn L (1998) Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae. J Biol Chem 273:31486–31493

    Article  CAS  Google Scholar 

  • Parachin NS, Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF (2010) The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Yeast 27:741–751

    Article  CAS  Google Scholar 

  • Pearce AK, Booth IR, Brown AJ (2001) Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. Microbiology 147:403–410

    CAS  Google Scholar 

  • Tantirungkij M, Nakashima N, Seki T, Yoshida H (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88

    Article  CAS  Google Scholar 

  • Toivari MH, Aristidou A, Ruohonen L, Penttila M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249

    Article  CAS  Google Scholar 

  • Traff-Bjerre KL, Jeppsson M, Hahn-Hagerdal B, Gorwa-Grauslund MF (2004) Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21:141–150

    Article  CAS  Google Scholar 

  • van den Berg MA, Steensma HY (1997) Expression cassettes for formaldehyde and fluoroacetate resistance, two dominant markers in Saccharomyces cerevisiae. Yeast 13:551–559

    Article  Google Scholar 

  • Wahlbom CF, van Zyl WH, Jonsson LJ, Hahn-Hagerdal B, Otero RR (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3:319–326

    Article  CAS  Google Scholar 

  • Walfridsson M, Anderlund M, Bao X, Hahn-Hagerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224

    Article  CAS  Google Scholar 

  • Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol 130:316–319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (No. 2004CB719702) and the National Knowledge Innovation Project of the Chinese Academy of Sciences. We thank Dr. Blanca Valle for reading and revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changying Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, C., Jiang, N. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation. World J Microbiol Biotechnol 29, 541–547 (2013). https://doi.org/10.1007/s11274-012-1208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1208-x

Keywords

Navigation