Skip to main content
Log in

Biosynthesis of nicotinic acid from 3-cyanopyridine by a newly isolated Fusarium proliferatum ZJB-09150

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, nitriles were used as sole sources of nitrogen in the enrichments to isolate nitrile-converting microorganisms. A novel fungus named ZJB-09150 possessing nitrile-converting enzymes was obtained with 3-cyanopyridine as sole source of nitrogen, which was identified by morphology, biology and 18S rDNA gene sequence as Fusarium proliferatum. It was found that F. proliferatum had ability to convert nitriles to corresponding acids or amides and showed wide substrate specificity to aliphatic nitriles, aromatic nitriles and ortho-substituted heterocyclic nitriles. The nitrile converting enzymes including nitrilase and nitrile hydratase in ZJB-09150 were induced by ε-caprolactam. Nitrilase obtained in this study showed high activity toward 3-cyanopyridine. It was active within pH 3.0–12.0 and temperature ranging from 25 to 65 °C with optimal at pH 9.0 and temperature 50–55 °C. The enzyme was thermostable and its half-life was 12.5 and 6 h at 45 and 55 °C, respectively. Under optimized reaction conditions, 60 mM 3-cyanopyridine was converted to nicotinic acid in 15 min, which indicated ZJB-09150 has potentials of application in large scale production of nicotinic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almatawah QA, Cowan DA (1999) Thermostable nitrilase catalysed production of nicotinic acid from 3-cyanopyridine. Enzyme Microb Technol 25:718–724

    Article  CAS  Google Scholar 

  • Cantarella M, Cantarella L, Gallifuoco A, Intellini R, Kaplan O, Spera A, Martinkova L (2008) Amidase-catalyzed production of nicotinic acid in batch and continuous stirred membrane reactors. Enzyme Microb Technol 42:222–229

    Article  CAS  Google Scholar 

  • Cantarella L, Gallifuoco A, Malandra A (2011) High-yield continuous production of nicotinic acid via nitrile hydratase-amidase cascade reactions using cascade CSMRs. Enzyme Microb Technol 48:345–350

    Article  CAS  Google Scholar 

  • Cantarella M, Cantarella L, Gallifuoco A, Spera A, Martinkova L (2012) Nicotinic acid bio-production by Microbacterium imperiale CBS 489–74: effect of 3-cyanopyridine and temperature on amidase activity. Process Biochem 47:1192–1196

    Article  CAS  Google Scholar 

  • Choi YH, Uhm KN, Kim HK (2008) Biochemical characterization of Rhodococcus erythropolis N′4 nitrile hydratase acting on 4-chloro-3-hydroxybutyronitrile. J Mol Catal B Enzym 55:157–163

    Article  CAS  Google Scholar 

  • Chuck R (2005) Technology development in nicotinate production. Appl Catal A Gen 280:75–82

    Article  CAS  Google Scholar 

  • Dias JCT, Rezende RP, Linardi VR (2000) Biodegradation of acetonitrile by cells of Candida guilliermondii UFMG-Y65 immobilized in alginate, kappa-carrageenan and citric pectin. Braz J Microbiol 31:61–66

    Article  CAS  Google Scholar 

  • Dong HP, Liu ZQ, Zheng YG, Shen YC (2010) Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis. Appl Microbiol Biotechnol 87:1335–1345

    Article  CAS  Google Scholar 

  • Dong HP, Liu ZQ, Zheng YG, Shen YC (2011) Medium optimization for nitrilase production by newly isolated Rhodococcus erythropolis ZJB-0910 using statistical designs. Chem Biochem Eng Q 25:351–358

    CAS  Google Scholar 

  • Goldlust A, Bohak Z (1977) Induction, purification and characterization of the nitrilase of Fusarium solani. Biochem J 167:685–692

    Google Scholar 

  • Harper DB (1977) Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusarium solani. Biochem J 167:685–692

    CAS  Google Scholar 

  • Jin LQ, Li YF, Liu ZQ, Zheng YG, Shen YC (2011) Characterization of a newly isolated strain Rhodococcus erythropolis ZJB-09149 transforming 2-chloro-3-cyanopyridine to 2-chloronicotinic acid. New Biotechnol 28:610–615

    Article  CAS  Google Scholar 

  • Kaplan O, Vejvoda V, Charvatova-Pisvejcova A, Martinkova L (2006a) Hyperinduction of nitrilases in filamentous fungi. J Ind Microbiol Biotechnol 33:891–896

    Article  CAS  Google Scholar 

  • Kaplan O, Vejvoda V, Plihal O, Pompach P, Kavan D, Bojarova P, Bezouska K, Mackova M, Cantarella M, Jirku V, Kren V, Martinkova L (2006b) Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol 73:567–575

    Article  CAS  Google Scholar 

  • Kaplan O, Nikolaou K, Pisvejcova A, Martinkova L (2006c) Hydrolysis of nitriles and amides by filamentous fungi. Enzyme Microb Technol 38:260–264

    Article  CAS  Google Scholar 

  • Layh N, Hirrlinger B, Stolz A, Knackmuss HJ (1997) Enrichment strategies for nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 47:668–674

    Article  CAS  Google Scholar 

  • Liu ZQ, Li FF, Cheng F, Zhang T, You ZY, Xu JM, Xue YP, Zheng YG, Shen YC (2011) A novel synthesis of iminodiacetic acid: biocatalysis by whole Alcaligenes faecalis ZJB-09133 cells from iminodiacetonitrile. Biotechnol Prog 27:698–705

    Article  CAS  Google Scholar 

  • Malandra A, Cantarella M, Kaplan O, Vejvoda V, Uhnakova B, Stepankova B, Kubac D, Martinkova L (2009) Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10. Appl Microbiol Biotechnol 85:277–284

    Article  CAS  Google Scholar 

  • Martinkova L, Vejvoda V, Kren V (2008) Selection and screening for enzymes of nitrile metabolism. J Biotechnol 133:318–326

    Article  CAS  Google Scholar 

  • Martinkova L, Vejvoda V, Kaplan O, Kubac D, Malandra A, Cantarella M, Bezouska K, Kren V (2009) Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv 27:661–670

    Article  CAS  Google Scholar 

  • Prasad S, Sharma DR, Bhalla TC (2005) Nitrile- and amidehydrolysing activity in Kluyveromyces thermotolerans MGBY 37. World J Microbiol Biotechnol 21:1547–1550

    Article  Google Scholar 

  • Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2007) A propionitrile-induced nitrilase of Rhodococcus sp NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23:345–353

    Article  CAS  Google Scholar 

  • Raj J, Singh N, Prasad S, Seth A, Bhalla TC (2007) Bioconversion of benzonitrile to benzoic acid using free and agar entrapped cells of Nocardia globerula NHB-2. Acta Microbiol Imm H 54:79–88

    Article  CAS  Google Scholar 

  • Rustler S, Stolz A (2007) Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast-Exophiala oligosperma R1. Appl Microbiol Biotechnol 75:899–908

    Article  CAS  Google Scholar 

  • Sharma NN, Sharma M, Kumar H, Bhalla TC (2006) Nocardia globerula NHB-2: bench scale production of nicotinic acid. Process Biochem 41:2078–2081

    Article  CAS  Google Scholar 

  • Sharma NN, Sharma M, Bhalla TC (2011) An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol 38:1235–1243

    Article  CAS  Google Scholar 

  • Snajdrova R, Kristova-Mylerova V, Crestia D, Nikolaou K, Kuzma M, Lemaire M, Gallienne E, Bolte J, Bezouska K, Kren V, Martinkova L (2004) Nitrile biotransformation by Aspergillus niger. J Mol Catal B Enzym 29:227–232

    Article  CAS  Google Scholar 

  • Vaughan PA, Knowles CJ, Cheetham PSJ (1989) Conversion of 3-cyanopyridine to nicotinic acid by Nocardia rhodococcus LL100–21. Enzym Microb Technol 11:815–823

    Article  CAS  Google Scholar 

  • Vejvoda V, Kaplan O, Klozova J, Masak J, Cejkova A, Jirku V, Stloukal R, Martínkova L (2006) Mild hydrolysis of nitriles by Fusarium solani strain O1. Folia Microbiol 51:251–256

    Article  CAS  Google Scholar 

  • Vejvoda V, Kaplan O, Bezouska K, Pompach P, Sulc M, Cantarella M, Benada O, Uhnakova B, Rinagelova A, Lutz-Wahl S, Fischer L, Kren V, Martinkova L (2008) Purification and characterization of a nitrilase from Fusarium solani O1. J Mol Catal B Enzym 50:99–106

    Article  CAS  Google Scholar 

  • Vejvoda V, Kubac D, Davidova A, Kaplan O, Sulc M, Sveda O, Chaloupkova R, Martinkova L (2012) Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochem 45(7):1115–1120

    Article  Google Scholar 

  • Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 241–245

    Google Scholar 

  • Xue YP, Xu SZ, Liu ZQ, Zheng YG, Shen YC (2011) Enantioselective biocatalytic hydrolysis of (R, S)-mandelonitrile for production of (R)-(-)-mandelic acid by a newly isolated mutant strain. J Ind Microbiol Biotechnol 38:337–345

    Article  CAS  Google Scholar 

  • Zheng RC, Wang YS, Liu ZQ, Xing LY, Zheng YG, Shen YC (2007) Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2, 2-dimethylcyclopropanecarboxamide. Res Microbiol 158:258–264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Major Basic Research Development Program of China (973 Project) (No. 2011CB710806), the Research Program of Science and Technology Department of Zhejiang Province (No. 2011R09043-07) and the Zhejiang Province Natural Sciences Foundation of China (No. Y4080334, Y3110391, Y4110409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, LQ., Liu, ZQ., Xu, JM. et al. Biosynthesis of nicotinic acid from 3-cyanopyridine by a newly isolated Fusarium proliferatum ZJB-09150. World J Microbiol Biotechnol 29, 431–440 (2013). https://doi.org/10.1007/s11274-012-1195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1195-y

Keywords

Navigation