Skip to main content
Log in

Efficiency of different Agrobacterium rhizogenes strains on hairy roots induction in Solanum mammosum

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P < 0.05). Both A. rhizogenes strain AR12 and A13 were able to induce hairy root at 6 days of co-cultivation, which were the fastest among those tested. However, the transformation frequencies of all five strains were below 30 %, with A. rhizogenes strain A4 and A13 showing the highest, which were 21.41 ± 10.60 % and 21.43 ± 8.13 % respectively. Subsequently, the cultures for five different hairy root lines generated by five different strains of bacteria were established. However, different hairy root lines showed different growth index under the same culture condition, with the hairy root lines induced by A. rhizogenes strain ATCC 31798 exhibited largest increase in fresh biomass at 45 days of culture under 16 h light/8 h dark photoperiod in half-strength MS medium. The slowest growing hairy root line, which was previously induced by A. rhizogenes strain A13, when cultured in optimized half-strength MS medium containing 1.5 times the standard amount of ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, Lashermes P, Etienne H (2008) Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 101(7):929–940

    Article  CAS  Google Scholar 

  • Banerjee S, Rahman L, Uniyal GC, Ahuja PS (1998) Enhanced production of valepotriates by Agrobacterium rhizogenes induced hairy root cultures of Valeriana wallichii DC. Plant Sci 131(2):203–208

    Article  CAS  Google Scholar 

  • Bettini P, Baraldi R, Rapparini F, Melani L, Mauro ML, Bindi D, Buiatti M (2010) The insertion of the Agrobacterium rhizogenes rolC gene in tomato (Solanum lycopersicum L.) affects plant architecture and endogenous auxin and abscisic acid levels. Sci Hortic 123(3):323–328

    Article  CAS  Google Scholar 

  • Bloom AJ, Sukrapanna SS, Warner RL (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol 99(4):1294–1301

    Article  CAS  Google Scholar 

  • Britton MT, Escobar MA, Dandekar AM (2008) The oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. In: Tzfira T, Citovsky V (eds) Agrobacterium: From biology to biotechnology. Springer Publications, New York, pp 524–563

    Google Scholar 

  • Cho H-J, Widholm JM, Tanaka N, Nakanishi Y, Murooka Y (1998) Agrobacterium rhizogenes-mediated transformation and regeneration of the legume Astragalus sinicus (Chinese milk vetch). Plant Sci 138(1):53–65

    Article  CAS  Google Scholar 

  • Christensen B, Muller R (2009) The use of Agrobacterium rhizogenes and its rol-genes for quality improvement in ornamentals. Eur J Hortic Sci 74(6):275–287

    CAS  Google Scholar 

  • Costa M, Figueiredo A, Barroso J, Pedro L, Deans S, Scheffer J (2008) Nitrogen stress induction on Levisticum officinale hairy roots grown in darkness and under photoperiod conditions: effect on growth and volatile components. Biotechnol Lett 30(7):1265–1270

    Article  CAS  Google Scholar 

  • Cui XH, Murthy H, Wu CH, Paek KY (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tiss Org Cult 103(1):7–14

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  Google Scholar 

  • Gangopadhyay M, Sircar D, Mitra A, Bhattacharya S (2008) Hairy root culture of Plumbago indica as a potential source for plumbagin. Biol Plantarum 52(3):533–537

    Article  CAS  Google Scholar 

  • Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676

    Article  CAS  Google Scholar 

  • George EF, de Klerk G-J (2008) The components of plant tissue culture media I: macro- and micro-nutrients. In: George EF, Hall MA, de Klerk G-J (eds) Plant propagation by tissue culture. Springer Publications, The Netherlands, pp 65–113

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18(1):1–22

    Article  CAS  Google Scholar 

  • Grzegorczyk I, Krolicka A, Wysokinska H (2006) Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Z Naturforsch 61C:351–356

    Google Scholar 

  • Hashem EA (2009) Estimation of the endogenous auxins and cytokinins in hairy roots incited on Solanum dulcamara plants by Ri plasmid of Agrobacterium rhizogenes. Aust J Basic Appl Sci 3(1):142–147

    CAS  Google Scholar 

  • Herrera-Estrella L, Simpson J, Martínez-Trujillo M (2004) Transgenic plants: An historical perspective. In: Peña L (ed) Methods in molecular biology: Transgenic plants—methods and protocols, vol 286., Humana PressTotowa, US, pp 3–31

    Google Scholar 

  • Hodges LD, Cuperus J, Ream W (2004) Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 186(10):3065–3077

    Article  CAS  Google Scholar 

  • Hu Z-B, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48(2):121–127

    Article  CAS  Google Scholar 

  • Huang SY, Chou SN (2006) Elucidation of the effects of nitrogen source on proliferation of transformed hairy roots and secondary metabolite productivity in a mist trickling reactor by redox potential measurement. Enzyme Microb Technol 38(6):803–813

    Article  CAS  Google Scholar 

  • Jacob A, Malpathak N (2004) Green hairy root cultures of Solanum khasianum Clarke—a new route to in vitro solasodine production. Curr Sci 87(10):1442–1447

    CAS  Google Scholar 

  • Jacob A, Malpathak N (2005) Manipulation of MS and B5 components for enhancement of growth and solasodine production in hairy root cultures of Solanum khasianum Clarke. Plant Cell Tiss Org Cult 80(3):247–257

    Article  CAS  Google Scholar 

  • Jualang AG, Marziah M, Radzali M, Johari R (2002) Establishment of Physalis minima hairy roots culture for the production of physalins. Plant Cell Tiss Org Cult 69(3):271–278

    Article  Google Scholar 

  • Karthikeyan A, Parvathy SPS, Raj RB (2007) Hairy root induction from hypocotyl segments of groundnut (Arachis hypogaea L.). Afr J Biotechnol 6(15):1817–1820

    CAS  Google Scholar 

  • Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11(4):707–726

    CAS  Google Scholar 

  • Liu C-Z, Guo C, Wang Y-C, Ouyang F (2002) Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Process Biochem 38(4):581–585

    Article  CAS  Google Scholar 

  • Lourenço PML, de Castro S, Martins TM, Clemente A, Domingos A (2002) Growth and proteolytic activity of hairy roots from Centaurea calcitrapa: effect of nitrogen and sucrose. Enzyme Microb Technol 31(3):242–249

    Article  Google Scholar 

  • Mehrotra S, Kukreja AK, Khanuja SPS, Mishra BN (2008) Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electron J Biotechnol 11(2):1–7

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15(3):473–497

    Article  CAS  Google Scholar 

  • Okršlar V, Štrukelj B, Kreft S, Bohanec B, Zel J (2002) Micropropagation and hairy root culture of Solanum laciniatum Ait. In Vitro Cell Dev Biol-Plant 38(4):352–357

    Article  Google Scholar 

  • Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180(3):439–446

    Article  CAS  Google Scholar 

  • Otani M, Shimada T, Kamada H, Teruya H, Mii M (1996) Fertile transgenic plants of Ipomoea trichocarpa Ell. induced by different strains of Agrobacterium rhizogenes. Plant Sci 116(2):169–175

    Article  CAS  Google Scholar 

  • Park JJ, Yoon SY, Cho H, Son S, Rhee H, Park J (2006) Patterns of protein expression upon adding sugar and elicitor to the cell culture of Eschscholtzia californica. Plant Cell Tiss Org Cult 86(2):257–269

    Article  CAS  Google Scholar 

  • Pawar PK, Maheshwari VL (2004) Agrobacterium rhizogenes mediated hairy root induction in two medicinally important members of family Solanaceae. Indian J Biotechnol 3:414–417

    Google Scholar 

  • Shin KS, Murthy HN, Heo JW, Paek KY (2003) Induction of betalain pigmentation in hairy roots of red beet under different radiation sources. Biol Plantarum 47(1):149–152

    Article  CAS  Google Scholar 

  • Subroto MA, Ester T, Partomuan S (2007) Changes in solasodine accumulation in regenerated plants of Solanum nigrum transformed with Agrobacterium rhizogenes 15834. Biotechnol 6:328–333

    Article  CAS  Google Scholar 

  • Sujanya S, Devi BP, Sai I (2008) In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica. J Biosci 33(1):113–120

    Article  CAS  Google Scholar 

  • Swain S, Sahu L, Pal A, Barik D, Pradhan C, Chand P (2012) Hairy root cultures of butterfly pea (Clitoria ternatea L.): Agrobacterium × plant factors influencing transformation. World J Microbiol Biotechnol 28(2):729–739

    Article  CAS  Google Scholar 

  • Thimmaraju R, Venkatachalam L, Bhagyalakshmi N (2008) Morphometric and biochemical characterization of red beet (Beta vulgaris L.) hairy roots obtained after single and double transformations. Plant Cell Rep 27(6):1039–1052

    Article  CAS  Google Scholar 

  • Tiwari R, Trivedi M, Guang Z, Guo GQ, Zheng GC (2007) Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep 26(2):199–210

    Article  CAS  Google Scholar 

  • Veena V, Taylor C (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol-Plant 43(5):383–403

    Article  CAS  Google Scholar 

  • Verma PC, Singh D, Rahman LU, Gupta MM, Banerjee S (2002) In vitro studies in Plumbago zeylanica: rapid micropropagation and establishment of higher plumbagin yielding hairy root cultures. J Plant Physiol 159(5):547–552

    Article  CAS  Google Scholar 

  • Wang JW, Tan RX (2002) Artemisinin production in Artemisia annua hairy root cultures with improved growth by altering the nitrogen source in the medium. Biotechnol Lett 24(14):1153–1156

    Article  CAS  Google Scholar 

  • Wang Y, Zhang H, Zhao B, Yuan X (2001) Improved growth of Artemisia annua L hairy roots and artemisinin production under red light conditions. Biotechnol Lett 23(23):1971–1973

    Article  CAS  Google Scholar 

  • Wu C-H, Dewir Y, Hahn E-J, Paek K-Y (2006) Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. J Plant Biol 49(3):193–199

    Article  CAS  Google Scholar 

  • Yazaki K, Matsuoka H, Shimomura K, Bechthold A, Sato F (2001) A novel dark-inducible protein, LeDI-2, and its involvement in root-specific secondary metabolism in Lithospermum erythrorhizon. Plant Physiol 125(4):1831–1841

    Article  CAS  Google Scholar 

  • Young JM (2008) Agrobacterium—Taxonomy of plant-pathogenic Rhizobium species. In: Tzfira T, Citovsky V (eds) Agrobacterium: From biology to biotechnology. Springer, New York, pp 183–220

    Google Scholar 

  • Yu KW, Murthy HN, Hahn EJ, Paek KY (2005) Ginsenoside production by hairy root culture of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23:53–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express the sincere thank to Prof. Dr. Masahiro Mii from Chiba University (Japan) for his kindness gift of Agrobacterium rhizogenes strain A4 and A13, and also to Dr. Sreeramanan Subramaniam from Universiti Sains Malaysia (USM) for his sincere gift of Agrobacterium rhizogenes strain AR12. The authors would also like to greatly acknowledge and thank Universiti Putra Malaysia for the constant support of funding given under Graduate Research Fellowship (GRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Maziah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooi, C.T., Syahida, A., Stanslas, J. et al. Efficiency of different Agrobacterium rhizogenes strains on hairy roots induction in Solanum mammosum . World J Microbiol Biotechnol 29, 421–430 (2013). https://doi.org/10.1007/s11274-012-1194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1194-z

Keywords

Navigation