Skip to main content

Advertisement

Log in

The effects of reed canary grass (Phalaris arundinacea L.) on wetland habitat and arthropod community composition in an urban freshwater wetland

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Reed canary grass (Phalaris arundinacea L.) is an aggressive invader that dominates wetlands throughout the US. We examined the effects of reed canary grass on wetland habitat, both vegetation canopy architecture and soil environment, and its impacts the arthropod community in an urban wetland in Portland, OR, USA. Reed canary grass dominance resulted in reduced vegetation canopy complexity through reductions in native vegetation diversity and canopy height. In addition, reed canary grass dominance significantly changed the wetland soil environment, decreasing soil organic content and increasing soil moisture. The arthropod community responded to these habitat changes, being distinct between plots dominated by reed canary grass and those dominated by native vegetation. In addition, diversity measures were significantly lower in plots dominated by reed canary grass. Variables describing both vegetation canopy complexity and soil environment were more important predictors than relative abundance of reed canary grass in multiple regression models developed for dominant arthropod taxa and community metrics. Our results suggest that the mechanism by which reed canary grass affects the wetland arthropod community is primarily indirect, through habitat changes, rather than by directly altering its food source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams CR, Galatowitsch SM (2006) Increasing the effectiveness of reed canary grass (Phalaris arundinacea L.) control in wet meadow restorations. Restor Ecol 14:441–451

    Article  Google Scholar 

  • Barnes WJ (1999) The rapid growth of a population of reed canary grass (Phalaris arundinacea L.) and its impact on some riverbottom herbs. J Torrey Bot Soc 126:133–138

    Article  Google Scholar 

  • Beaulieu F, Wheeler TA (2002) Insects (Diptera, Coleoptera, Lepidoptera) reared from wetland monocots (Cyperaceae, Poaceae, Typhaceae) in southern Quebec. Proc Entomol Soc Wash 104:300–308

    Google Scholar 

  • Berthnal T, Willis K (2004) Using landstat 7 imagery to map invasive reed canary grass (Phalaris arundinacea): a landscape level wetland monitoring methodology. Final Report to US EPA Region V, Wisconsin Department of Natural Resources, Madison, WI

  • Boersma PD, Reichard SH, Van Buren AN (2006) Invasive species in the Pacific Northwest. University of Washington Press, Seattle

    Google Scholar 

  • Brazner JC, Danz NP, Niemi GJ, Regal RR, Trebitz AS, Howe RW, Hanowski JM, Johnson LB, Ciborowski JJH, Johnston CA, Reavie ED, Brady VJ, Sgro GV (2007a) Evaluation of geographic, geomorphic and human influences on Great Lakes wetland indicators: a multi-assemblage approach. Ecol Ind 7:610–635

    Article  Google Scholar 

  • Brazner JC, Danz NP, Trebitz AS, Niemi GJ, Regal RR, Hollenhorst T, Host GE, Reavie ED, Brown TN, Hanowski JM, Johnston CA, Johnson LB, Howe RW, Coborowski JJH (2007b) Responsiveness of great lakes wetland indicators to human disturbances at multiple spatial scales: a multi-assemblage assessment. J Great Lakes Res 33:42–66

    Article  Google Scholar 

  • Carlson IT, Oram RN, Surprenant J (1996) Reed canarygrass and other Phalaris species. Agron Monogr 34:569–604

    Google Scholar 

  • Coops H, van der Brink FWB, van der Velde G (1996) Growth and morphological responses of four helophyte species in an experimental waterdepth gradient. Aquat Bot 54:11–24

    Article  Google Scholar 

  • Douglas MM, O’Conner RA (2003) Effects of the exotic macrophyte, para grass (Urochloa mutica), on benthic and epiphytic macroinvertebrates of a tropical floodplain. Freshw Biol 48:962–971

    Article  Google Scholar 

  • Dukes JS (2000) Will increasing atmospheric CO2 affect the success of invasive species? In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, DC, pp 95–113

    Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  CAS  PubMed  Google Scholar 

  • Figiel CR, Collins B, Wein G (1995) Variation in survival and biomass of two wetland grasses at different nutrient and water levels over a six week period. Bull Torrey Bot Club 122:24–29

    Article  Google Scholar 

  • Fink DF, Mitsch WJ (2004) Seasonal and storm event nutrient removal by a created wetland in an agricultural watershed. Ecol Eng 23:313–325

    Article  Google Scholar 

  • Galatowitsch SM, Anderson NO, Ascher PD (1999) Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755

    Article  Google Scholar 

  • Galatowitsch SM, Whited DC, Lehtinen R, Husveth J, Schik K (2000) The vegetation of wet meadows in relation to their land-use. Environ Monit Assess 60:121–144

    Article  Google Scholar 

  • Green EK, Galatowitsch SM (2002) Effects of Phalaris arundinacea and nitrate-N addition on the establishment of wetland plant communities. J Appl Ecol 39:134–144

    Article  CAS  Google Scholar 

  • Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JMH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35

    Article  CAS  PubMed  Google Scholar 

  • Hansen JD, Castelle AJ (1999) Insect diversity in soils of tidal and nontidal wetlands of Spencer Island, Washington. J Kansas Entomol Soc 72:262–272

    Google Scholar 

  • Hawkins BA, Porter EE (2003) Does herbivore diversity depend on plant diversity? The case of California butterflies. Am Nat 161:40–49

    Article  PubMed  Google Scholar 

  • Herr-Turoff A, Zedler JB (2007) Does morphological plasticity of Phalaris arundinacea canopy increase invasiveness? Plant Ecol 193:265–277

    Article  Google Scholar 

  • Houlahan JE, Findlay CS (2004) Effect of invasive plant species on temperate wetland plant diversity. Conserv Biol 18:1132–1138

    Article  Google Scholar 

  • Jenkins NJ, Yeakley A, Stewart E (2008) First-year responses to managed flooding of lower Columbia River bottomland vegetation dominated by Phalaris arundinacea. Wetlands 28:1018–1027

    Article  Google Scholar 

  • Katterer T, Andren O (1999) Growth dynamics of reed canary grass (Phalaris arundinacea L.) and its allocation of biomass and nitrogen belowground in a field receiving daily irrigation and fertilization. Nutr Cycl Agroecosyst 54:21–29

    Article  Google Scholar 

  • Kellogg CH, Bridgham SD, Leicht SA (2003) Effects of water level, shade and time on germination and growth of freshwater marsh plants along a simulated successional gradient. J Ecol 91:274–282

    Article  Google Scholar 

  • Kercher SM, Zedler JB (2004) Multiple disturbances accelerate invasion of reed canary grass (Phalaris arundinacea L.) in a mesocosm study. Oecologia 138:455–464

    Article  PubMed  Google Scholar 

  • Kercher SM, Carpenter QJ, Zedler JB (2004) Interrelationships of hydrologic disturbance, reed canary grass (Phalaris arundinacea L), and native plants in Wisconsin wet meadows. Nat Areas J 24:316–325

    Google Scholar 

  • Kercher SM, Herr-Turoff A, Zedler JB (2007) Understanding invasion as a process: the case of Phalaris arundinacea in wet prairies. Biol Invasions 9:657–665

    Article  Google Scholar 

  • Kotanen PM, Bergelson J, Hazlett DL (1998) Habitats of native and exotic plants in Colorado shortgrass steppe: a comparative approach. Can J Bot 76:664–672

    Google Scholar 

  • Lavergne S, Molofsky J (2004) Reed canary grass (Phalaris arundinacea) as a biological model in the study of plant invasions. Crit Rev Plant Sci 23:415–429

    Article  Google Scholar 

  • Lavoie C, Dufrense C (2005) The spread of reed canary grass (Phalaris arundinacea) in Quebec: a spatiotemperal perspective. Ecoscience 12:366–375

    Article  Google Scholar 

  • Lavoie C, Jean M, Delisle M, Letourneau G (2003) Exotic plant species of the St. Lawrence River wetlands: a spatial and historical analysis. J Biogeogr 30:537–549

    Article  Google Scholar 

  • Lev E, Fugate J, Hayes MP, Smith D, Wilson L, Wissemann R (1994) The biota of Smith and Bybee Lakes management area. METRO, Portland

    Google Scholar 

  • Lindig-Cisneros R, Zedler JB (2002) Relationships between canopy complexity and germination microsites for Phalaris arundinacea L. Oecologia 133:159–167

    Article  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invisibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Lunde KB, Resh VH (2012) Development and validation of a macroinvertebrate index of biotic integrity (IBI) for assessing urban impacts to Northern California freshwater wetlands. Environ Monit Assess 184:3653–3674

    Article  CAS  PubMed  Google Scholar 

  • Magee TK, Kentula ME (2005) Response of wetland plant species to hydrologic conditions. Wetland Ecol Manag 13:163–181

    Article  Google Scholar 

  • Magee TK, Ernst TL, Kentula ME, Dwire KA (1999) Floristic comparison of freshwater wetlands in an urbanizing environment. Wetlands 19:517–534

    Article  Google Scholar 

  • Mahaney WM, Wardrop DH, Brooks RP (2004) Impacts of sedimentation and nitrogen enrichment on wetland plant community development. Plant Ecol 175:227–243

    Article  Google Scholar 

  • Martina JP, von Ende CN (2008) Correlation of soil nutrient characteristics and reed canary grass (Phalaris arundinacea) abundance in Northern Illionis (USA). Am Midl Nat 160:430–437

    Article  Google Scholar 

  • Mathews JW, Endress AG (2008) Performance criteria, compliance success and vegetation development in compensatory mitigation wetlands. Environ Manage 41:130–141

    Article  Google Scholar 

  • Mattson MI, Addy ND (1975) Phytophagous insects as regulators of forest primary production. Science 190:515–522

    Article  Google Scholar 

  • Maurer DA, Zedler JB (2002) Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131:279–288

    Article  Google Scholar 

  • Maurer DA, Lindig-Cisneros R, Werner KJ, Kercher S, Miller R, Zedler JB (2003) The replacement of Wetland vegetation by reed canarygrass (Phalaris arundinacea). Ecol Restor 21:116–119

    Article  Google Scholar 

  • Meier MS (2004) Effects of reed canary grass (Phalaris arundiancea) on terrestrial arthropod biomass, abundance, and diversity in upper Midwestern riparian wet meadows. Master’s Thesis, University of Wisconsin-LaCrosse

  • Merigliano MF, Lesica P (1998) The native status of reed canary grass (Phalaris arundinacea L.) in the inland Northwest, USA. Nat Areas J 18:223–230

    Google Scholar 

  • Miller RC, Zedler JB (2003) Responses of native and invasive wetland plants to hydroperiod and water depth. Plant Ecol 167:57–69

    Article  Google Scholar 

  • Mulhouse JM, Galatowitsch SM (2003) Revegetation of prairie pothole wetlands in the mid-continental US: twelve years post-reflooding. Plant Ecol 169:143–159

    Article  Google Scholar 

  • Murdoch WW, Evans FC, Peterson CH (1972) Diversity and pattern in plants and insects. Ecology 53:819–829

    Article  Google Scholar 

  • Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10:99–109

    Article  Google Scholar 

  • Parker IM, Simberloff D, Lonsdale W, Goodell K, Wonham M, Kareiva K, Williamson M, Holle BV, Moyle P, Byers J, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  • Perkins TE, Wilson MV (2005) The impacts of Phalaris arundinacea (reed canary grass) invasion on wetland plant richness in the Oregon Coast Range, USA depends on beavers. Biol Conserv 124:291–295

    Article  Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Potts GR, Vickerman GR (1974) Studies in cereal ecosystems. Adv Ecol Res 8:107–117

    Article  Google Scholar 

  • Riesterer JL, Undersander DJ, Casler MD, Combs DK (2000) Forage yield of stockpiled perennial grasses in the upper Midwest USA. Agron J 92:740–747

    Article  Google Scholar 

  • Bottom DL, Simenstad CA, Burke J, Baptista AM, Jay DA, Jones KK, Casillas E, Schiewe, MH (2005) Salmon at river’s end: the role of the estuary in the decline and recovery of Columbia River salmon. U.S. Department of Commerce, Northwest Fisheries Science Center, Seattle, WA, USA. NOAA Technical Memo NMFS-NWFSC-68

  • Schooler SS, McEvoy PB, Coombs EM (2006) Negative per capita effects of purple loosestrife and reed canary grass on plant diversity of wetland communities. Divers Distrib 12:351–363

    Article  Google Scholar 

  • Schooler SS, McEvoy PB, Hammond P, Coombs EM (2009) Negative per capita effects of two invasive plants, Lythrium salicaria and Phalaris arundinacea, on the moth diversity of wetland communities. Bull Entomol Res 99:229–243

    Article  CAS  PubMed  Google Scholar 

  • Seastadt TR, Crossley DA (1984) The influence of arthropods on ecosystems. Bioscience 34:157–160

    Article  Google Scholar 

  • Semere T, Slater FM (2007) Invertebrate populations in miscanthus (Miscanthus giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31:30–39

    Article  Google Scholar 

  • Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152:738–750

    Article  CAS  PubMed  Google Scholar 

  • Simberloff D (2000) Global climate change and introduced species in United States forests. Sci Total Environ 262:253–261

    Article  CAS  PubMed  Google Scholar 

  • Slobodchikoff CN, Doyen JT (1977) Effects of Ammophila arenaria on sand dune arthropod communities. Ecology 58:1171–1175

    Article  Google Scholar 

  • Spyreas G, Ellis J, Carroll C, Molano-Flores B (2004) Non-native plant commonness and dominance in the forests, wetlands, and grasslands of Illinois, USA. Nat Areas J 24:290–299

    Google Scholar 

  • Spyreas G, Wilm BW, Plocher AE, Ketzner DM, Matthews JW, Ellis JL, Heske EJ (2010) Biological consequences of invasion by reed canary grass (Phalaris arundinacea). Biol Invasions 12:1253–1267

    Article  Google Scholar 

  • Stannard M, Crowder W (2001) Biology, history, and suppression of reed canary grass (Phalaris arundinacea L.). U.S. Department of Agriculture, Natural Resources Conservation Service, Boise, ID, USA

  • Studdy CD, Morris RM, Ridge I (1995) The effects of separated cow slurry liquor on soil and herbage nitrogen in Phalaris arundinacea and Lolium perenne. Grass Forage Sci 50:106–111

    Article  Google Scholar 

  • Tangen BA, Butler MG, Ell MJ (2003) Weak correspondence between macroinvertebrate assemblages and land use in Prairie Pothole Region wetlands, USA. Wetlands 23:104–115

    Article  Google Scholar 

  • Tanner CD, Cordell JR, Rubey J, Tear LM (2002) Restoration of freshwater intertidal habitat functions at Spencer Island, Everett, Washington. Restor Ecol 10:564–576

    Article  Google Scholar 

  • Thomas CFG, Marshall EJP (1999) Arthropod abundance and diversity in differently aged vegetated margins of arable fields. Agric Ecosyst Environ 72:131–144

    Article  Google Scholar 

  • Vervuren PJA, Beurskens S, Blom C (1999) Light acclimation, CO2 response and long-term capacity of underwater photosynthesis in three terrestrial plant species. Plant, Cell Environ 22:959–968

    Article  Google Scholar 

  • Vetsch JA, Randall GW, Russelle MP (1999) Reed canarygrass yield, crude protein, and nitrate N response to fertilizer N. J Prod Agric 12:465–471

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Warren RS, Fell PE, Rozsa E, Brawley AH, Orsted AC, Olson ET, Swamy V, Niering WA (2002) Salt marsh restoration in connecticut: 20 years of science and management. Restor Ecol 10:497–513

    Article  Google Scholar 

  • Werner KJ, Zedler JB (2002) How sedge meadow soils, microtopography, and vegetation respond to sedimentation. Wetlands 22:451–466

    Article  Google Scholar 

  • Wetzel PR, van der Valk AG (1998) Effects of nutrient and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecol 138:179–190

    Article  Google Scholar 

  • Wilkie L, Cassis G, Gray M (2007) The effects on terrestrial arthropod communities of invasion of a coastal heath ecosystem by the exotic weed bitou bush (Chrysanthe-moides monilifera ssp. rotundata L.). Biol Invasions 9:477–498

    Article  Google Scholar 

  • Williamson M (1999) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Elaine Stewart at Portland Metro for allowing us to work at Smith and Bybee wetlands and for providing background information about the vegetation and history of this site. Tara Magginis at the University of Portland provided assistance with arthropod identification. Matthew McCary of the University of Illinois—Chicago provided helpful information for arthropod functional group classification. We would also like to thank the students and teaching assistants from the University of Portland Wetlands Ecology classes (2013–2015) for their inspiration to conduct this research and their assistance with fieldwork at Smith and Bybee wetlands. This research was funded by a M J Murdock Charitable Trust Life Science grant to University of Portland and the University of Portland College of Arts and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Weilhoefer.

Appendix

Appendix

Multiple regression model output for sweepnet and pitfall arthropod community metrics, relative abundance, and overall community composition (NMDS axis scores) generated for order and morphospecies data. Only models with an R2 > 0.50 are presented. Community metric abbreviations: taxa richness (S), Shannon–Weaver diversity (H′), Simpson’s diversity (D), and Pileou’s evenness (J).

 

Estimate

SE

T

P

F

Df

P

R2

Adj-R2

SN-all seasons

         

 S-overall model

2.24

1.77

1.26

0.218

21.1

2, 26

0.0000

0.62

0.59

  Soil moisture (%)

–0.10

0.03

–4.01

0.000

     

  Soil temperature (°C)

0.29

0.08

3.41

0.002

     

 H′-overall model

2.12

0.74

2.88

0.008

9.1

6, 22

0.0000

0.71

0.63

  Total canopy cover (%)

–0.01

0.00

–2.56

0.018

     

  Canopy height (cm)

0.00

0.00

2.84

0.010

     

  Soil moisture (%)

–0.02

0.01

–2.67

0.014

     

  Soil temperature (°C)

–0.09

0.04

–2.41

0.025

     

 J-overall model

1.39

0.41

3.37

0.003

6.2

7, 21

0.0005

0.68

0.57

  Total canopy cover (%)

0.00

0.00

–3.06

0.006

     

  Canopy height (cm)

0.00

0.00

2.77

0.012

     

  Soil organic (%)

0.03

0.01

2.18

0.041

     

  Soil temperature (°C)

–0.13

0.04

–3.21

0.004

     

 Pielou-overall model

1.94

0.28

7.03

0.000

7.4

8, 19

0.0002

0.76

0.65

  Total canopy cover (%)

–0.01

0.00

–3.87

0.001

     

  Vegetation species richness

0.08

0.03

2.72

0.014

     

  Canopy height (cm)

0.00

0.00

2.40

0.027

     

  Soil organic (%)

0.04

0.01

3.53

0.002

     

  Soil temperature (°C)

–0.19

0.04

–4.39

0.000

     

 Dominance-overall model

–0.34

0.41

–0.83

0.415

5.0

7, 21

0.0019

0.62

0.50

  Total canopy cover (%)

0.00

0.00

2.84

0.010

     

  Canopy height (cm)

0.00

0.00

–2.18

0.041

     

  Soil temperature (°C)

0.14

0.04

3.69

0.001

     

 Homoptera-overall model

0.38

0.16

2.33

0.031

3.5

9, 19

0.0103

0.62

0.45

  Reed canary grass (%)

0.00

0.00

–2.64

0.016

     

  Canopy height (cm)

0.00

0.00

3.90

0.001

     

  Light extinction (%)

0.31

0.13

2.38

0.028

     

  Soil temperature (°C)

–0.09

0.03

–3.42

0.003

     

 Diptera-overall model

–0.77

0.47

–1.63

0.118

4.1

8, 20

0.0049

0.62

0.47

  Total canopy cover (%)

0.01

0.00

3.10

0.006

     

  Canopy height (cm)

0.00

0.00

–2.48

0.022

     

  Soil temperature (°C)

0.17

0.05

3.63

0.002

     

 Aranae-overall model

0.08

0.03

2.36

0.027

3.9

4, 24

0.0146

0.39

0.29

  Reed canary grass (%)

0.00

0.00

–2.22

0.036

     

  Total canopy cover (%)

0.00

0.00

3.39

0.002

     

 Collembola-overall model

0.94

0.19

4.96

0.000

9.3

4, 24

0.0001

0.61

0.54

  Reed canary grass (%)

0.00

0.00

3.21

0.004

     

  Total canopy cover (%)

0.00

0.00

–3.11

0.005

     

  Soil organic (%)

0.04

0.01

3.17

0.004

     

  Soil temperature (°C)

–0.06

0.01

–5.40

0.000

     

 Hymenoptera-overall model

0.04

0.14

0.28

0.781

14.1

6, 22

0.0000

0.79

0.74

  Canopy height (cm)

0.00

0.00

3.21

0.004

     

  Soil temperature (°C)

–0.03

0.01

–2.37

0.027

     

 Coleoptera-overall model

–0.23

0.10

–2.37

0.026

4.9

3, 25

0.0084

0.37

0.29

  Total canopy cover (%)

0.00

0.00

2.33

0.028

     

  Vegetation species richness

0.03

0.01

3.02

0.006

     

 Acarina-overall model

–0.03

0.06

–0.43

0.670

3.2

4, 24

0.0302

0.35

0.24

  Soil temperature (°C)

0.02

0.01

2.11

0.046

     

 NMDS axis 1-overall model

2.85

0.46

6.25

0.000

9.4

5, 22

0.0000

0.68

0.61

  Total canopy cover (%)

–0.01

0.00

–3.21

0.004

     

  Vegetation species richness

–0.15

0.05

–3.27

0.004

     

  Soil temperature (°C)

–0.09

0.03

–3.40

0.003

     

  Soil moisture (%)

–0.03

0.01

–2.28

0.033

     

 NMDS axis 2-overall model

–1.01

0.61

–1.64

0.116

8.1

7, 20

0.0000

0.74

0.65

  Reed canary grass (%)

–0.01

0.00

–3.89

0.001

     

  Total canopy cover (%)

0.01

0.00

3.56

0.002

     

  Vegetation species richness

–0.12

0.05

–2.43

0.024

     

  Soil organic (%)

–0.05

0.02

–2.68

0.014

     

  Soil moisture (%)

0.02

0.01

3.28

0.004

     

  Soil temperature (°C)

0.07

0.03

2.43

0.025

     

PF-all seasons

         

 S–overall model

–2.14

1.59

–1.35

0.186

15.6

6, 35

0.0000

0.73

0.68

  Total canopy cover (%)

0.03

0.01

2.52

0.016

     

  Vegetation species richness

0.69

0.20

3.51

0.001

     

  Canopy height (cm)

0.01

0.01

2.35

0.024

     

  Soil temperature (°C)

0.36

0.09

4.14

0.000

     

 H′-overall model

2.15

0.45

4.77

0.000

6.7

5, 36

0.0002

0.48

0.41

  Soil moisture (%)

–0.02

0.01

–2.76

0.009

     

  Soil temperature (°C)

0.05

0.02

2.52

0.016

     

 J-overall model

0.97

0.22

4.41

0.000

5.7

4, 37

0.0011

0.38

0.32

  Soil temperature (°C)

0.03

0.01

2.87

0.007

     

  Soil moisture (%)

–0.01

0.00

–2.71

0.010

     

 Pielou-overall model

1.14

0.24

4.74

0.000

2.2

2, 38

0.1297

0.10

0.05

  Soil moisture (%)

–0.01

0.00

–1.57

0.124

     

  Soil temperature (°C)

–0.02

0.01

–1.93

0.061

     

 Dominance-overall model

0.22

0.22

0.99

0.328

4.5

4, 37

0.0045

0.33

0.26

  Soil temperature (°C)

–0.03

0.01

–2.88

0.007

     

  Soil moisture (%)

0.01

0.00

2.40

0.022

     

 Homoptera-overall model

0.01

0.00

2.94

0.006

9.0

3, 38

0.0001

0.42

0.37

  Total canopy cover (%)

0.00

0.00

–3.88

0.000

     

  canopy height (cm)

0.00

0.00

3.51

0.001

     

 Diptera-overall model

0.15

0.11

1.32

0.196

9.4

2, 39

0.0005

0.33

0.29

  Soil temperature (°C)

–0.02

0.01

–2.73

0.009

     

  Soil moisture (%)

0.01

0.00

4.23

0.000

     

 Aranae-overall model

0.30

0.05

5.59

0.000

7.5

2, 39

0.0018

0.28

0.24

  RCG (%)

0.00

0.00

–2.88

0.006

     

  Soil moisture (%)

–0.01

0.00

–3.35

0.002

     

 Collembola-overall model

0.92

0.26

3.55

0.001

5.7

4, 37

0.0011

0.38

0.32

  Light extinction (%)

–0.58

0.26

–2.21

0.033

     

  Soil temperature (°C)

–0.05

0.01

–4.04

0.000

     

 Hymenoptera-overall model

0.04

0.07

0.64

0.528

6.7

3, 38

0.0010

0.35

0.29

  Total canopy cover (%)

0.00

0.00

–3.06

0.004

     

  Soil temperature (°C)

0.01

0.00

3.64

0.001

     

  Soil moisture (%)

0.00

0.00

–2.28

0.028

     

 Coleoptera-overall model

0.18

0.20

0.91

0.372

15.2

5, 36

0.0000

0.68

0.63

  Total canopy cover (%)

0.00

0.00

2.23

0.032

     

  Soil organic (%)

0.02

0.01

2.46

0.019

     

  Soil moisture (%)

–0.01

0.00

–3.32

0.002

     

 Acarina-overall model

–1.37

0.30

–4.52

0.000

9.8

7, 34

0.0000

0.67

0.60

  Total canopy cover (%)

0.01

0.00

3.49

0.001

     

  Canopy height (cm)

0.00

0.00

–2.84

0.007

     

  Soil organic (%)

–0.04

0.01

–4.58

0.000

     

  Soil moisture (%)

0.01

0.00

2.58

0.014

     

  Light extinction (%)

0.66

0.18

3.68

0.001

     

  soil temperature (°C)

0.05

0.01

5.38

0.000

     

 NMDS axis 1-overall model

2.29

0.41

5.60

0.000

9.2

5, 36

0.0000

0.56

0.50

  RCG (%)

0.01

0.00

2.65

0.012

     

  Total canopy cover (%)

–0.01

0.00

–3.23

0.003

     

  Soil temperature (°C)

–0.10

0.02

–5.93

0.000

     

 NMDS axis 2-overall model

2.04

0.78

2.61

0.013

5.0

5, 36

0.0015

0.41

0.33

  Soil organic (%)

0.08

0.03

2.81

0.008

     

  Light extinction (%)

–1.08

0.50

–2.15

0.039

     

  Soil temperature (°C)

–0.06

0.02

–2.75

0.009

     

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weilhoefer, C.L., Williams, D., Nguyen, I. et al. The effects of reed canary grass (Phalaris arundinacea L.) on wetland habitat and arthropod community composition in an urban freshwater wetland. Wetlands Ecol Manage 25, 159–175 (2017). https://doi.org/10.1007/s11273-016-9507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-016-9507-x

Keywords

Navigation